
Checking consistency of robot software architectures in ROS

Thomas Witte and Matthias Tichy
Ulm University

Software Engineering and Programming Languages

thomas.witte,matthias.tichy@uni-ulm.de

ABSTRACT

Context: The software architecture of complex robot systems is

usually divided into components. The software is then the configu-

ration and combination of those components and their connectors.

Objective: In the Robot Operating System (ROS), this architectural

configuration, the ROS node graph, is partly defined in code and

created at run-time. The static information about the architecture

in the configuration is limited and checking the consistency at de-

velopment time is not possible. The full software has to be manually

executed to check the consistency and debug configuration errors.

Method: We propose an approach and a corresponding tool to

analyze ROS nodes and their launch files to check consistency and

issue warnings if potential problems are detected. The approach

uses both static analysis of the launch files as well as dynamic anal-

ysis of individual ROS nodes to reconstruct the node graph without

executing the whole launch configuration. The nodes are executed

in a sandbox to prevent side effects and enable the integration of

the analysis tool, e.g., into automated testing systems.

Results: The evaluation on internal and publicly available ROS

projects shows that we are able to reconstruct the complete archi-

tecture of the system if the nodes implement a common lifecycle.

Conclusion: The approach enables ROS developers to avoid cre-

ating incompatible architectures and check consistency already at

development time. The approach can be extended to also monitor

architectural consistency at run time.
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• Computer systems organization→Maintainability and main-

tenance; • Software and its engineering→ Formal methods; Ar-

chitecture description languages;
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1 INTRODUCTION

The Robot Operating System (ROS, [13]) is a widely used frame-

work for developing robotics applications. Its Open Source license

and the active community lead to broad adoption throughout many

robotics domains [5]. ROS applications consist of multiple nodes

that communicate in a peer-to-peer fashion with a rosmaster func-

tioning as a name server and parameter database. The network is

designed to be flexible and reconfigurable at run-time. Nodes can

be started at arbitrary times and join or leave the network without

interrupting or affecting its function.

Enabling such highly dynamic modifications on a running ap-

plication greatly accelerates development speed and improves the

fault tolerance of the system but may also introduce quality issues.

The resulting application’s components possible combinations and

states are impossible to test exhaustively. Due to the dynamic na-

ture, almost no static guarantees, like compatibility of interfaces,

can be made at compile time. This hinders the adoption of ROS in

commercial or production systems.

To facilitate starting and configuring multiple nodes at once, ROS

ships with the tool roslaunch [4]. Roslaunch defines an XML schema

for its configuration files that allows to describe all or parts of the

ROS application. This configuration mainly consists of required

nodes, their namespace hierarchy, configuration, launch arguments,

and distribution over available host computers. When executed,

roslaunch simply starts each node with its respective configuration

in no specific order.

This configuration format can be seen as a rudimentary architec-

ture description language [8] for ROS applications as it models the

composition and configuration of components in the application

as well as structuring elements like namespaces and hosts. It is,

however, incomplete: communication channels are not explicitly

modeled. The two main communication forms in ROS – topics

for publish-subscribe style broadcasting of messages and services

for remote procedure calls in other nodes – are not described in

a declarative way but created programmatically by the nodes at

run-time.

1.1 Problem Statement

ROS nodes connect implicitly through named topics or services.

This can lead to an application that fails at run-time due to mis-

takenly unconnected components or unintentional and unwanted

connections. If a node is misconfigured, it may refuse to start. In all

of these cases, the application might fail silently. Per default, the

ROS network keeps running and does not try to restart crashed

nodes1. No warning is issued if a topic has subscribers but no pub-

lisher.

1Roslaunch can be configured to automatically restart crashed nodes. However, simply
restarting the node oftentimes just hides the underlying problem and causes bugs that
are even harder to find and resolve.
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Errors in roslaunch configurations are therefore hard to detect

– even at run-time [1]. Especially, roslaunch configurations for

live operation of robots are hard to test safely. The robot has to

be started while debugging the configuration. Reusing parts of

the configuration between simulation and live operation, creating

special launch files to test the interface of a node, debugging running

configurations as well as following best practices and using idioms

for roslaunch configurations are common practice to mitigate these

problems [6].

During development, launch configuration "age" particularly fast

as the topic / service interface and configuration keys often change.

If these configurations are not executed regularly, they soon become

unusable. Testing configurations is done manually most of the time

in particular for live robot operation. From our experience, best

practices and idioms can hardly be enforced and changes to the

interface of a node during development are often not applied to all

roslaunch configurations. Sometimes, testing complex applications

spanning multiple hosts is impossible on development machines.

1.2 Research Questions

As a first step towards solving the aforementioned problems, we

aim to check launch configurations for common inconsistencies in

a safer way – without actually starting and endangering the robot

and its operator. The following three research questions guided our

development of a new approach towards checking ROS architec-

tures.

RQ 1: What information can be derived statically from launch files?

RQ 2: How can we retrieve the missing architectural information

without executing the launch file?

RQ 3: Which of these sources of information are reliable enough

to reconstruct the ROS network graph?

The contribution of this paper is an approach to analyze roslaunch

configurations safely and reliably by first resolving all includes and

substitutions in the input launch file and creating a node tree from

the static information in the launch file. As information on ROS

topics and services cannot be derived solely from the roslaunch

configuration, we use multiple strategies to analyze the referenced

nodes.

Analysis of the nodes’ source code does not yield usable informa-

tion in most cases; tests using a simple pattern matching approach

on the source files could not produce any topic information as all

nodes in our own projects make topic names configurable. Instead,

the nodes are individually executed in a sandboxed environment.

By intercepting calls to the language-specific ROS client library, we

are able to extract the missing topic and service information, as long

as the nodes’ lifecycle follows a common structure and best practice

as well as that the topics and services do not depend on run-time or

sensor data. In these cases, the developer can provide the missing

information through annotations in the analyzed launch files.

We developed a tool that implements most of the described

approach as a proof-of-concept prototype [17]. First tests using

launch files not only from our own projects show promising results.

For simple examples, the run-time graph can be derived completely.

Due to unimplemented features, complex launch configurations

cannot be analyzed accurately yet.

After discussing existing work and tools in Section 2, we describe

our approach and its limitations in Section 3 inmore detail. Section 4

presents preliminary test results from our prototype tool. Open

issues in our approach and the prototype tool are discussed in

Section 5.

2 RELATEDWORK

Architecture description languages (ADLs) are a broad and incon-

sistently defined research field. Medvidovic and Taylor proposed a

framework [8] to classify and compare different ADLs. According

to their classification, roslaunch configurations do not meet the

requirements for an ADL, as they do not contain information on

connectors. We aim to retrieve this missing information through

dynamic analysis of the components.

Brugali and Gherardi adapted their HyperFlex framework [2]

to ROS. Their framework enables defining the architecture of a ro-

botics application constructively. Software product lines (SPLs) are

used to describe possible variations in the robotics application. The

consistency of the resulting ROS graph is guaranteed through con-

straints on the configuration of the SPL. In contrast, our approach

tries to deduct the architecture from existing launch configurations

to check the consistency of the resulting node graph.

To configure and start multiple ROS nodes together, roslaunch is

the standard tool available in every ROS installation. Other imple-

mentations exist that use the same configuration format but offer

additional features: rqt_launch [14] has a graphical user interface

to start, stop or restart individual nodes and can start all configured

nodes in a deterministic order. node_manager_fkie [16] specializes

in starting nodes across multiple hosts. It can connect to multiple

rosmaster instances and monitor running nodes.

Multiple graphical editors for ROS launch files were proposed.

However, these projects either aim to visualize launch file structure

and not the resulting run-time graph or need additional files that

describe the resulting run-time behavior.

rxDeveloper [10] tries to simplify the creation of launch files by

visualizing the ROS graph structure. It uses specification files to get

information on topics, services and parameters of the configured

nodes. Another graphical launch file editor was developed as part of

the RADOE project [11] since development of rxDeveloper seems

to have halted. Here, the user must configure topic publications

and subscriptions by hand before connecting multiple nodes.

Viki [7] is a graphical ROS interface that improves upon previous

attempts to provide a data flow based GUI by introducing modules.

These modules provide an abstraction over the fine granularity of

ROS nodes and group multiple ROS nodes into function blocks, that

can be connected through input and output ports. The resulting

architecture graph can be exported in the roslaunch configuration

format or started directly. Viki depends on module descriptions that

provide the necessary information on input and output ports. In

contrast, our approach tries to derive similar information directly

from the respective ROS node.

Similar to our tool prototype, rqt_launchtree [15] statically ana-

lyzes roslaunch configurations. It resolves includes and substitution

parameters and offers a GUI to trace nodes back to the correspond-

ing configuration files. Some inconsistencies trigger warnings in

the GUI, like parameters set twice to different values. However, all
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consistency checks are limited to the information provided in the

launch files. Misconfigured topics and services can not be detected.

ROS provides the tool roswtf [3] to search for problems in a run-

ning ROS application. It uses a set of rules to detect multiple com-

mon problems like subscribed but unpublished topics. Consistency

checks on the ROS graph are done during run-time. Additionally,

nodes that do not exist but are referenced in launch configurations,

duplicate nodes and missing includes can be found statically.

Bihlmaier et al. proposed ARNI [1], a framework to monitor

large ROS systems at run-time to find performance bottlenecks

and configuration errors. If violations of a known good state are

detected, automatic countermeasures can be taken to ensure con-

tinued functionality of the ROS network.

Rostest is an extension to roslaunch. The roslaunch configuration

serves as a fixture for testing ROS nodes. A special test tag can be

used to start a test node that integrates common test frameworks,

such as gtest for C++ or unittest for Python. Unlike our prototype

tool, rostest can not test roslaunch configurations themselves but

merely uses launch configurations to describe the test environment

for nodes.

The problem of inconsistent and misconfigured ROS applications

has been identified and described before. The proposed solutions

focus on either guaranteeing the consistency constructively by con-

straining the composition of nodes or checking and monitoring the

ROS graph at run-time for problems. In contrast, our approach does

not constrain launch files and can be used on existing configura-

tions without the need to actually execute the configuration and

running into these problems.

3 OUR APPROACH

Roslaunch configurations describe the architecture and parametriza-

tion of the system. However, they lack information on message

channels, such as topics and services between the different nodes.

It is therefore possible to retrieve the node tree, the nodes and their

enclosing namespaces, which forms a tree structure but not the

topic and service connections between these nodes.

Due to the dynamic nature and lack of enforced lifecycle of ROS

nodes, topics and services can be created (and removed) at any

time and depending on parameters, arguments the environment

and even sensor data or data received through ROS. It is therefore

impossible to get complete information on the topics and services

a node provides or uses solely through static analysis.

Our approach uses a combination of multiple sources to retrieve

additional information to decorate the node tree: currently, only

sandboxed execution and launch file annotations are implemented

but other sources, such as static analysis of the node’s source code

can be easily integrated and improve the quality and completeness

of the annotated node tree.

Multiple report plugins can then use the annotated node tree to

perform e.g. consistency checks or visualize the node graph. These

reports can in turn be used as input for other tools. A CI system

can use the consistency reports to detect and reject changes that

break existing launch configurations. The expected run-time graph,

our tool produces, can be compared with the specified architecture

or a known good graph from a previous run.

analyze nodes

create report

node tree

.launch

resolve includes /
substitution args

.launch

>_

env. vars

sandboxed
execution

launch-file
annotations

source code
analysis

...

trace nodes
to includes

check topic
connections

visualize
node graph

...

Figure 1: Schematic overview of the analysis toolchain. Node

information that cannot be retrieved from the launch files

directly, is provided by one or more analysis plugins.

3.1 Node tree creation

As a first step in the analysis of a roslaunch configuration, the

XML-Structure must be validated against its XML Schema.

Roslaunch allows parametrization of any string in the XML-

Structure through substitution args, which must be resolved prior to

any subsequent analysis while parsing the configuration. Additional

launch files – whose file names might need to be resolved – can be

included into the launch configuration, which might require pro-

cessing additional substitutions and inclusions recursively. These

substitutions might depend on environment variables, installed

ROS packages, the start arguments for the launch configuration,

the directory structure or any Python expression. Therefore, our

prototype implementation depends on an execution environment

as close as possible to the launch environment and spawns the

system’s python interpreter to evaluate eval substitutions.

A tree visitor can then collect all node tags in the XML structure

and create the node tree. Inner nodes are ROS namespaces and

leaves are ROS nodes. Additional information from the launch files

is saved in the leaf nodes: start arguments, parameters, name and

remappings might influence the run-time behavior of the ROS node

and are necessary for the node analysis. Tracing information, like

the launch file name corresponding to the ROS node can improve

the reporting quality and is saved as well (Figure 2).

However, further information on Topics and Services cannot

be retrieved from the launch configuration. At run-time, nodes

can freely communicate over any topic or service by its name.

To retrieve this missing information, the nodes referenced in the

roslaunch configuration must be analyzed. For each node, the

started binary, its parameters and configuration are known through

the launch configuration.

Neither static nor dynamic analysis techniques can obtain com-

plete topic and service information for a node. Listing 1 shows a

minimal example of a node that publishes to a random topic. A

launch configuration using this node might be inconsistent during
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Param
key
value

Port
name
data_type

<<enum>>
ADVERTISE
SUBSCRIBE
ADV_SERVICE
CALL_SERVICE

NodeDesc
name
type
package
launch_file

NodeTree

1

1

1

1 1 10…*

0…*

0…*

0…*

Figure 2: Data model of the node tree.

some launches but consistent during others. While a ROS node pub-

lishing to a random topic might not exist in real world applications,

other more common nodes can show a similar behavior: rosbag

play nodes create topics depending on the content of the recording

and camera tracking nodes often create topics depending on the

currently visible or tracked objects.

Listing 1: The ROS node publishes to a random topic.

#!/usr/bin/env python

import rospy

import random

from std_msgs.msg import String

if __name__ == '__main__ ':

topic = 'topic '+str(random.randint (0 ,5))

rospy.init_node('rnd_node ')

pub = rospy.Publisher(topic ,

String ,

queue_size =10)

pub.publish('hello ')

rospy.spin()

3.2 Node source analysis

The natural extension to the static launch file analysis, is to statically

analyze the source code of the ROS node.

While this probably works for scripting languages like Python,

this introduces multiple severe limitations for nodes written in

compiled languages like C++. The launch file references the node

executable; finding the corresponding source code is non-trivial.

3rd party nodes might be distributed in compiled form without

locally available source code. Locating local ROS workspaces and

analyzing the cmake build files to identify the source files is hardly

feasible.

Alternatively, most compilers leave source file paths in the binary

file – even in release builds. These can be found by searching for

strings matching file name patterns in the binary. In our tests using

gcc 5 the .cpp file for each translation unit can be found but none

of the included header files. Finding the header files would again

require analyzing the complete build files.

If the referenced files exist in the file system, they can be searched

for statements that create or connect to topics or services. The scope

of the source code analysis is further limited, as most C preprocessor

defines and variables can not be resolved due to missing include

files. The name of the topic or service must be a literal in the

statement. False positives, e.g., topic subscriptions that are hidden

behind conditional statements, can not be prevented, as symbolic

execution techniques are limited due to the missing header files.

3.3 Sandboxed execution

Dynamic analysis techniques are more broadly applicable: compiled

ROS nodes can be analyzed without access to the source code. By

executing the ROS node with the parameters given in the launch

configuration, only the relevant code paths are analyzed and the

result is more accurate.

The sandboxed execution analysis exploits our observation that

– despite the flexibility of ROS node – most nodes follow the sim-

ple lifecycle shown in Figure 3. In this case, the topic and service

connections are created after the configuration and arguments are

processed, but before entering the event loop and do not change

during the run-time. Particularly, topic and service connections are

independent from run-time data received through ROS or sensor

data.

process arguments

read configuration

allocate data structures

create topic / service connections

wait for services or data

receive data

process data

send data

Figure 3: Common lifecycle of a ROS node.

Furthermore, it is assumed that most ROS nodes act indepen-

dently and do not need a combination of other nodes to function.

Nodes communicate with each other using only ROS communi-

cation channels and create their input and output topics before

checking for the existence of services and topic publishers. A no-

table exception to this is gazebo. The gzserver does not expose topics

itself but is needed by spawn_model.

A ROS node following this lifecycle can be analyzed by starting

it with the given configuration and arguments and then observing

which topics and services it subscribes or publishes. As the con-

nections do not change after entering the main loop, the started

node can be killed again after a few seconds. Figure 4 shows a

schematic representation of the dynamic analysis approach used.
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The execution of the node is sandboxed using Firejail[12] to pre-

vent any persistent changes to the file system. Stronger isolation

mechanisms such as docker might limit the executed node even

further but complicate the replication of the execution environ-

ment including the ROS stack and available system libraries. An

application sandbox on the other hand is designed to preserve the

host environment while limiting some capabilities like file system

access.

In order to gather information on published or subscribed topics

and services, an additional library is injected into the node process

to intercept the corresponding calls to the roscpp or rospy libraries.

This approach offers some benefits over querying the rosmaster.

The ROS master API has no function to query the request and

result data types of services and has no information on service calls:

only announced services are known to the rosmaster, clients call

these services directly in a peer-to-peer fashion. By intercepting

the library calls, this additional information is still available. The

response and results can even be manipulated to mock non-existing

services or avoid blocking if the node waits for a service or topic to

become available.

Firejail sandbox

ROS Node

roscpp/rospy

roscore

libroscpp_preload.so
rospy_preload.py

advertise
subscribe

roslaunch-analyze

Topics
Services

Params
Args

Figure 4: An additional library intercepts calls to the ROS

library and provides topic and service information. Sand-

boxed execution ensures that no persistentwrites to disk are

possible.

Most ROS language bindings use a specific client library. The two

most used client libraries are roscpp for nodes written in C++ and

rospy for python nodes. Both libraries themselves are implemented

in their respective language, and therefore need a specific library

and technique to intercept library calls.

To intercept calls to the rospy python library, aspect oriented pro-

gramming using aspectlib is used. Wrappers around the intercepted

functions are weaved into rospy before starting the actual node.

Listing 2 intercepts calls to the constructor of rospy.Publisher.

Unfortunately, this powerful and safe approach is not possible

in C++ without recompilation of the code. For roscpp, an additional

library is preloaded using the dynamic linker. The library contains

symbols for the intercepted methods that shadow the symbols in

the original roscpp library. All calls are logged and the original

method is called to ensure unaltered functionality. Listing 3 shows

the wrapper for the advertise method. It uses dlsym to load the

Listing 2: Function to intercept calls to the Publisher con-

structor in the rospy library.

@aspectlib.Aspect

def wrap_publisher(self , topic , datatype ,

subscriber_listener=None ,

tcp_nodelay=False ,

latch=False ,

headers=None ,

queue_size=None):

log('<<advertise >>␣'

+ rospy.names.resolve_name(topic) + '␣'

+ datatype.__module__.split('.')[0] + '/'

+ datatype.__name__)

yield

aspectlib.weave(rospy.Publisher.__init__ ,

wrap_publisher)

original method from the roscpp library using the mangled method

name. The C++ Standard forbids casts between void* and point-

ers to member functions. A union ptm_cast is used to defeat the

type system. This rather fragile and compiler dependent code is

necessary, as dlsym does not support C++ directly. Templated or

inlined functions and methods can not be intercepted using dlsym.

These functions are generated on demand while the node is com-

piled and no library call is necessary. Roscpp typically just creates

a properties object in the templated methods and forwards the call

to a non-template method that can be intercepted. Some type in-

formation on service calls is lost, as only the service type’s md5

sum is forwarded in the library call. It is still possible to check

whether the type of the advertised service matches the service call

by comparing the md5 sums. Getting a human-readable name of

the type of a called service is possible by building a lookup table

from all advertised services, as a valid service call must refer to an

advertised service in the configuration.

Currently, the sandboxed execution analysis only supports roscpp

and rospy. Other client libraries need custom methods to intercept

calls and log topic and service connections. However, ROS2 uses

a common core library for all language bindings which mitigates

this drawback.

3.4 Launch file annotations

If all of the aforementioned analysis plugins fail to provide the

missing topic and service information, the interface of the ROS

node can be specified directly in the launch file. Comments inside

of node tags are parsed and may contain a topics or services tag.

Listing 4 shows an example of a topics tag.

As these XML tags are inside a comment, roslaunch currently

just ignores them. The surrounding comment tag is not necessary,

as roslaunch just issues a warning if it encounters an unknown tag

and skips it. This way, future versions of roslaunch or a watchdog

node might adopt this schema extension and ensure the specified

topics and services are indeed available at run-time.

5
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Listing 3: Function to intercept calls to the advertisemethod

in the roscpp library.

Publisher NodeHandle :: advertise(

AdvertiseOptions& opts)

{

typedef Publisher (NodeHandle ::* advertise_t)

(AdvertiseOptions &);

static advertise_t orig_advertise = nullptr;

if (! orig_advertise) {

// load the symbol from the roscpp library

// and cast it to a member pointer

ptm_cast <advertise_t > tmp;

tmp.pmember = nullptr;

tmp.vs.pvoid = dlsym(RTLD_NEXT ,

"_ZN3ros10NodeHandle9advertise"

"ERNS_16AdvertiseOptionsE");

orig_advertise = tmp.pmember;

}

// get the node's namespace

std:: string ns = getUnresolvedNamespace ();

if (!ns.empty ())

ns.append("/");

// log the topic name and data type

log << "<<advertise >>␣" << (ns + opts.topic)

<< "␣" << opts.datatype << std::endl;

// forward the call to the original method

return (this ->* orig_advertise )(opts);

}

Listing 4: Example of a topics tag that provides the missing

topic data for a node.

<node name="listener"

pkg="roscpp_tutorials"

type="listener">

<!--

<topics >

<topic name="chatter"

type="String"

class="sub"/>

</topics >

-->

</node>

3.5 Reporting

Our current prototype outputs two reports as a result of the analysis.

A representation of the node tree which shows the complete names-

pace and node structure after all includes and substitutions. Each

node and namespace is colored corresponding to the configuration

file it stems from in order to allow easy tracing.

Additionally, all known topic connections are reported. For each

topic, a list of known publishers and subscribers is shown to easily

spot unpublished but subscribed topics.

4 EXPERIMENTAL RESULTS

A prototypical implementation was used to evaluate our approach.

Launch configurations from three different projects were analyzed

and compared to the run-time information rostopic yields when the

complete configuration is started.

To test the basic functionality, we analyzed the launch config-

urations from the ros_tutorials repository. These launch files are

example files that start small tutorial nodes. While not overly com-

plex, they showcase different implementation techniques and a

broad range of functionality for nodes using roscpp and rospy.

Many nodes follow these nodes’ general structure as they serve as

examples in the ROS tutorials.

As shown in Table 1, for the rospy tutorials, we analyzed the

provided launch files and found that for 6 out of 8 launch files the

analysis yielded correct and complete topic and service information

for all nodes. The remaining cases failed because of unimplemented

features in our prototype, namely incorrect handling of topic re-

names and parameters which are not forwarded to the sandboxed

execution.

The roscpp tutorials in most cases do not provide accompanying

launch files for the example nodes. We therefore started each node

using the sandboxed execution and compared the resulting topic

and service information with the expected topics and services from

a manual source code inspection. The analysis yielded correct and

complete information in all 20 cases.

Table 1: Correctness of the analysis results on different

launch configurations from the rospy_tutorials project.

rospy_tutorials notes

talker_listener �
headers �
listener_with_user_data incorrect topic renames

listener_subscribe_notify �
parameters missing parameter

connection_header �
on_shutdown �
advanced_publish �

To test whether our approach is applicable to real world applica-

tions, we tested our prototype implementation on launch config-

urations from our own projects and the hector quadrotor project

[9]. Correct and complete topic and service information could be

derived for most nodes.

Table 2 shows the correctness of the analysis of one of our

projects’ launch files. For each node that is configured in the launch

file, the number, name and type of topics and services found by

the prototype is compared to the run-time information gathered

by rostopic when the full launch configuration is executed2. The

2At startup, each node connects to the /rosout topic and advertises two services to
send logging data and control its verbosity. Nodes therefore advertise at least one topic
and two services which are included in the table
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node lifecycle in Figure 3 is strongly encouraged for our own code

and our guidelines for launch configurations advise against the use

of remappings or non-private parameters if possible. Therefore,

no missing feature of the prototype implementation is hit and the

nodes satisfy the requirements for successful analysis introduced in

Section 3.3. The node and namespace structure is correctly derived

from the launch file and all node connections have been retrieved

using the sandboxed execution approach.

Table 2: Correctness of the analysis of a launch file from our

own projects.

collision_test_rviz topics services

drone1/quad_node 4/4 2/2

drone1/quad_script_node 9/9 2/2

drone1/sim_photo_node 4/4 3/3

drone1/trajectory_client_node 11/11 2/2

drone2/quad_node 4/4 2/2

drone2/quad_script_node 9/9 2/2

drone2/sim_photo_node 4/4 3/3

drone2/trajectory_client_node 11/11 2/2

rviz 8/8 3/3

trajectory_server_node 7/7 2/2

If the launch configuration contains mainly 3rd-party nodes, the

accuracy of our analysis decreases. Table 3 shows analysis results

for the hector indoor slam demo configuration from the hector

quadrotor project. We could correctly identify topics and services

for 6 of the 14 running nodes.

Table 3: Correctness of the analysis of a launch file from the

hector_quadrotor project.

hector/indoor_slam_gazebo topics services

gazebo 9/89 30/64

robot_state_publisher 2/5 2/2

ground_truth_to_tf 6/6 2/2

pose_estimation 26/- 2/-

controller_spawner 0/2 0/2

estop_relay 3/3 2/2

pose_action 4/8 2/2

landing_action 8/15 2/2

takeoff_action 8/11 2/2

spawn_robot 2/- 2/-

hector_mapping 13/13 3/3

hector_trajectory_server 4/6 2/4

hector_geotiff_node 3/3 2/2

rviz 13/13 3/3

joy 4/4 2/2

teleop 17/18 2/2

The node tree – built from the statically available information in

the configuration file – was mostly correct. However, our prototype

currently does not support the if and unless attributes for, e.g.,

nodes or groups and analyzed the pose_estimation node that is

not started when the configuration is executed under roslaunch.

The spawn_robot node exits as soon as it spawned the robot model

in gazebo, so its topic and service connections were not recorded

by rostopic. Due to incompletely forwarded configuration in our

prototype, the robot_state_publisher and spawn_robot nodes did

not start correctly.

Some nodes such as pose_action, landing_action and takeoff_action

do not follow the aforementioned lifecycle and wait for data on

topics before finishing the initialization of all topics and services.

This causes the sandboxed analysis to yield incomplete results as

the nodes wait for data and block until the nodes are terminated.

Our prototype can not yet send dummy data to the detected topics

to continue execution in these situations.

Gazebo does only exhibit a fraction of its topics and services,

as the robot model is not loaded when run in isolation. The con-

troller_spawner and spawn_robot nodes are closely connected to

the gazebo simulator and do not expose their full functionality if

they are started separately.

5 OPEN ISSUES

Missing features in our prototype implementation. Our prototype

is still in development and is still missing some crucial features. The

static analysis of the launch files is still incomplete and multiple

tags are completely ignored. Handling of inline YAML and loading

of parameter files is not yet implemented and global parameters

are not handled correctly in all cases. Machine tags, environment

tags, remappings and attributes to conditionally enable or disable

tags in the launch file are currently completely ignored.

Analysis of nodes that implement different lifecycles. To analyze

topics and services exposed by nodes, our prototype implements

only the sandboxed execution presented in Section 3.3 and launch

file annotations (Section 3.4).

Nodes that do not implement the lifecycle shown in Figure 3

are in most cases not correctly analyzed. By intercepting calls to

wait for services or data and returning immediately we could work

around some of these problems.

Alternatively, the analysis tool can connect to every topic and

service it detects and provide it with dummy data to skip any wait

statements in the analyzed node.

Waiting until necessary topics or services are announced is a

common pattern to avoid race conditions at startup due to the non-

deterministic order in which the nodes are started by roslaunch.

Checking for nodes and services before entering the main loop

can also prevent erroneous behavior in case of misconfiguration.

However, it is better to do such checks after all topic and service

connections are created to avoid deadlocks in the node graph (cf.

Figure 3).

Nodes that cannot be analyzed using sandboxed execution. If a

node’s interface depends on run-time data – e.g. the topics, it pub-

lishes to correspond to the names of tracked objects – the node

does not expose all topics and services when executed in a sandbox.

Similarly, a driver node that connects to hardware that is not

present during the analysis might exit or crash before initializing

its topics and services, which prevents successful analysis.
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It is possible to detect crashes or prematurely exiting nodes and

adapt the analysis strategy accordingly. Launch file annotations for

these nodes could be automatically generated from executing other

launch files that use the same nodes.

Dependent nodes. Nodes can configure other nodes by communi-

cating over other channels than ROS topics and services, e.g. plugin

interfaces or send special messages to other nodes that cause these

nodes to create topics. Such dependent nodes can not be started in

isolation but must be started as a group of nodes to be successfully

analyzed.

It must be ensured, that the group of simultaneously started

nodes is minimal, as starting multiple nodes violates the isolation

principle of the sandboxed analysis.

6 CONCLUSION AND FUTUREWORK

We presented an approach to analyze roslaunch configurations by

first statically analyzing the roslaunch configuration itself and then

retrieving missing information from the ROS nodes themselves by

executing them in isolation in an application sandbox. By injecting

an analysis library into the node process, that intercepts calls to

the language-specific core ROS library, we are able to retrieve more

information than is available to the rosmaster.

RQ 1: What information can be derived statically from launch files?

Roslaunch files contain the configuration of the nodes that comprise

the system. This includes the namespace structure, parametrization

and parameters to the nodes. By incorporating the environment and

the arguments, the configuration is executed with, all substitutions

in the launch file can be resolved. However, the launch file does not

contain information on communication channels, as ROS connects

to topics and services programmatically at run-time and not in a

declarative fashion.

RQ 2: How can we retrieve the missing architectural information

without executing the launch file? We developed a dynamic ap-

proach to retrieve the missing topic and service information directly

from the configured ROS nodes. The connections of a ROS node

are created at run-time and may depend on data at run-time but

are in most cases static once configured at startup. The nodes are

executed to initialize in a sandbox and the library calls that create

topic or service connections are intercepted and logged.

Alternatively, if the node can not be analyzed using the sand-

boxed execution approach, the launch files can be annotated to

provide the missing architectural information.

RQ 3: Which of these sources of information are reliable enough to

reconstruct the ROS network graph? Our tool prototype is able to

correctly reconstruct the ROS network graph if the nodes follow

the lifecycle model in Figure 3. Other nodes sometimes yield incom-

plete information but the missing information can be annotated in

the launch file to enable our tool to reliably reconstruct the ROS

network graph.

6.1 Future Work

We will continue to improve the tool prototype to address the re-

maining issues from Section 5. Once the tool supports all roslaunch

features, we plan to conduct an extended evaluation on a broader

set of projects.

The reporting functionality can be extended and integrated into

development toolchains. Automatic regression testing of launch

configurations in a CI environment can detect interface changes of

nodes that are not correctly propagated to the launch files. Once

a launch configuration is started correctly, it is not guaranteed to

operate correctly, as nodes can fail or crash at run-time. A watchdog

at run-time can continuously compare the current ROS graph to

the expected graph generated by our analysis tool.

With the release of ROS2, our tool needs to be adapted to the

planned new roslaunch configuration format which is scheduled

to be released in summer 2018. With ROS2, nodes can implement

a predefined lifecycle that simplifies the dynamic analysis of the

nodes to retrieve topic and service information. The XML based

launch file format will be replaced by python scripts to enable the

use of more complex logic.
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