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ABSTRACT

Designing a robotic application is a challenging task. It requires a

vertical expertise spanning various fields, starting from hardware

and low-level communication to high-level architectural solution

for distributed applications. Today a single expert cannot undertake

the entire effort of creating a robust and reliable robotic application.

The current landscape of robotics middlewares, ROS in primis, does

not offer a solution for this problem yet; developers are expected to

be both architectural designers and domain experts. In our previous

works we used the Architecture Analysis and Description Language

to define amodel-based approach for robot development, in an effort

to separate the competences of software engineers and robotics

experts, and to simplify the merge of software artifacts created

by the two categories of developers. In this work we present a

practical use-case, i.e., an autonomous wheelchair, and how we

used a combination of model-based developed and automatic code

generation to completely re-design and re-implement an existing

architecture originally written by hand.
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1 INTRODUCTION

Robots are complex systems: sophisticated and heterogeneous hard-

ware components coordinated by a software architecture which

structures the execution of advanced algorithms. Robots are the

result of the cooperation of experts from various fields: mechanical

engineering, electronics, control theory, software engineering, arti-

ficial intelligence, and more, depending on the application. Often

these experts interact with each other on the common field of the

software architecture, each one providing a small implementation

to solve a domain specific problem, this could be either a device
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driver, a low-level control system, a high-level planner or the under-

lying communication infrastructure. However, no real support for

this cooperation exists which separates the efforts of each expert

and, at the same time, combines them seamlessly.

Robot software architectures are typically designed as distributed

component-based systems (see [4] for a survey), most of them

implemented exploiting the infrastructure provided by a robotic

middleware [13]. Currently, the most used is the Robot Operating

System (ROS) [15]. It is based on a system composed by nodes and

topics. Nodes are processes and each implements a precise func-

tionality; this may be more or less complex depending on the case,

e.g., a device driver or a control loop. Topics are named commu-

nication channels used to exchange messages between nodes in a

publish/subscribe fashion. In this scenario one would expect ROS

to lay a specific structure a developer can use to implement the

nodes, but this is not the case.

One of the reasons of ROS early popularity was the simplicity of

its implementation and the freedom left to the developers, to cite

ROS designers motto: "we don’t wrap your main". While this un-

limited freedom, and lack of structure, was viable almost ten years

ago when robotic applications were mostly prototypes and small

academic implementations, today this is not sustainable. Indeed,

efforts existed already to adopt a more formal approach to robot

development. For example OROCOS [5] tried to introduce design

good practices, RoCK [12] proposed a system description based on

Ruby, and SmartSoft [16] introduced a model-driven development

approach. None of them has yet reached a level of diffusion compa-

rable to ROS, therefore they end up abandoned or they are used by

relatively small research groups.

Other efforts were aimed at the general development process,

like BRICS [6], which tried to promote robotic software reuse

through software product lines and model-driven development,

RobotML [9], an extension of the UML format to describe robotic

applications, or RobMoSys, a currently active project aimed at co-

ordinating the robotic community in creating a structured robot

ecosystem at the level of robotics models and meta-models. It is

possible that RobMoSys will succeed where others have failed, since

it recognizes one of the strength that ROS has: the community. In-

deed, in the years, hundreds of developers created components and

made them available to the public to be used in various projects: a

new ROS developer can bootstrap his first robot by writing a small

amount of code.

Nevertheless, robotic systems complexity grows dramatically

when adding functionalities and working outside already existing

components; often developers are unprepared to this growth, es-

pecially when they are expert on a specific field without a strong

background in software development. A typical example is given by
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control experts porting their own control algorithms from a simu-

lated environment to the real robot. These developers not only need

an architectural overview of the system, to provide the structure

and connections between components, but they also ought tools to

help in the design the inner working of each of these components;

especially if they need to adapt existing algorithms and libraries.

The long term aim of our work is to exploit a model-based ap-

proach to create a description of a robot architecture and use this

model to do architectural analysis and automatic code generation.

To do so we use the Architecture Analysis and Description Lan-

guage (AADL) [10] to describe the model (details of this are de-

scribed in our previous work [2]). We use ROS as our target for code

generation, to achieve a double objective: (I) provide a complete

toolchain that goes from the model to the implementation and (II)

enhance the ROS implementation in a way that will help developer

create better nodes and distinguish between framework-related and

problem-related implementations.

In this paper we present a use case in model-based design where

we took an existing working robot, with an architecture developed

by hand by a roboticist, and, starting from that, we developed

a new architecture aiming at the same functionalities. The new

architecture is entirely based on automatically generated ROS nodes

from their abstract description in the Architecture Analysis and

Design Language (AADL) as presented in [2]. Section 2 provides

a description of the platform used, in Section 3 we describe in

details how the software was modeled using AADL. In Section 4

and Section 5 we discuss how we actually implemented the robot

architecture, first detailing the structure of our base ROS node, and

then describing how we applied this reference design to all the

nodes in the architecture. Section 6 compares the outcome of the

model-based development against the original architecture, while

in Section 7 we discuss our results and present some related works.

Section 8 presents some relevant conclusions to be derived from

the work.

2 THE ROBOT PLATFORM

The robot used in this work is an electric wheelchair modified

to be controlled with a computer, and equipped with a collection

of sensors and other hardware components as part of the ALMA

project 1. The underlying wheelchair is a standard model produced

by Degonda Rehab SA; it is the Twist T4 2x2, suitable for indoor

and outdoor use, with great maneuver capabilities thanks to its

two-wheeled dynamics. The system which converts the wheelchair

in a robotic platform is called Personal Mobility Kit (PMK), and it

consists of:

• motor encoders, to provide wheel odometry.

• two Sick TiM 561 laser scanner distance sensors, to add full

environmental perception.

• the Shuttle DS81L used as the on-board PC to run ROS.

In principle, the Personal Mobility Kit can be interfaced with

any wheelchair control system since it is an add-on mounted over

an already existing hardware. In our work we build the interface

to communicate with the on-board electronics manufactured by

Penny&Giles Drive Technologies Ltd. (PGDT). Extending the PMK

to work with other electronic systems would not be overly complex,

1http://www.alma-aal.org/

since it would require a change of interface (namely software and

hardware elements), but not a modification of the core of the PMK

in terms of control algorithms.

A standard wheelchair is controlled using a joystick, placed

generally on one of the armrests, this provides manual control with

no native support for assisted or autonomous movements. The

software components of the PMK extends the functionalities of the

wheelchair, by implementing the following drive modes:

• Fully manual with PMK tuned off, i,e, the wheelchair

is controlled via the on-board joystick. This is the native

driving mode of the platform, it has to be available even

after the modification introduced by the PMK.

• Fullymanual butmediated by PMK. Movements are con-
trolled by a wireless joypad or by using the on-board joystick.

• Assisted, meaning that the movements, requested indiffer-
ently by the joystick or the joypad, are processed by the PMK

to avoid possible obstacles perceived by the lasers.

• Fully autonomous, in which the wheelchair control is

taken by the PMK which drives around a known environ-

ment (i.e., already mapped) circumventing obstacles to reach

a requested goal.

3 THE MODEL

Fig. 1 represents the whole architecture of the system described

using AADL, while tools [11] exist to aid AADL development and

creation of graphical representation of the textual model, the ver-

sion presented here is created by hand to increase clarity. We re-

moved some details, namely the unused ports on some nodes (i.e.,

move_base) and the binding of each topic on the corresponding

virtual ROS bus.

For the definition of the model we exploited nesting capabilities

of the system component to organize and generalize the architecture.

We divided the main system in four subsystems, each capturing a

specific functionality of the robot: teleoperation, sensing, naviga-

tion and platform.

3.1 Teleoperation

This subsystem encapsulates all the software and hardware compo-

nents to implement teleoperation. In this case it includes an XInput

joypad, specifically a Logitech Gamepad F710, the ROS driver node

joy_node from package joy, which reads input from the hardware

and converts it into a ROSmessage, and the custom node joy_control

to convert the message from the driver to velocity commands. The

subsystem also includes the physical USB connection used by the

joypad, modeled as a physical bus. The entire subsystem exposes a

single outgoing port associated with the velocity command, this

makes it possible to replace the teleoperation module in the model

with any other configuration, e.g., a different physical controller,

without changing the whole structure of the system.

3.2 Sensing

ROS Navigation requires at least two information sources: a laser

range finder and the odometry. The aim of the sensing subsystem

is to abstract multiple laser scanners mounted on the robot into a

single source of information; we modeled it with a single outgoing

port representing a scan topic. This subcomponent contains the
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Figure 1: Graphical representation of theAADLdescription of thewhole architecture. Thefigure show thehierarchical division

of the obtained using the system components. Some connections are omitted for clarity.

hardware model of the two Sick laser range finders, their respective

driver, each one a different instance of the same process model, and

a node used to merge the scans from each laser into a single output.

Messages coming from this scan merger are then relayed outside

the subsystem. As for the teleoperation subsystem, the sensing

module includes the physical bus connecting the laser range finder

to the system, in this case an ethernet connection.

3.3 Navigation

This subsystem mostly contains legacy nodes from the ROS Navi-

gation stack, with the addition of a custom node used to integrate

the speed of the robot and estimate its local position. The data

component used to model tf is included here as a mean to share

the position of the robot. The navigation subsystem receives sen-

sor sources, the robot speed and the scans, to output a velocity

command. No hardware component is present, being this a purely

software submodule. Abstracting this part of the architecture and

clearly defining what kind of input and output the navigation sub-

system expects is particularly important given our aim with the

autonomous wheelchair. Indeed, we want to use it as a reference

platform to test different algorithms and architectural solutions for

navigation.

3.4 Platform

All the platform specific nodes and hardware components are con-

tained in this subsystem. A device component models the Personal

Mobility Kit used as low-level interface between the wheelchair and

the software architecture. This hardware component is connected

using a special bus to the custom made driver ratp_node, which also

works as a bridge between non-ROS data streams and ROS mes-

sages. The other nodes are multiplexers for manual or autonomous

driving specifically designed for this robot given the peculiar dou-

ble manual configuration (i.e., driving with the on-board joystick

or with the remote joypad), and a node implementing local obstacle

avoidance for assisted driving. The whole subsystem is designed

with generality in mind, therefore it exposes three inbound ports,

two of them are velocity command (i.e., manual, and autonomous)

and one is for scan messages (i.e., obstacle avoidance), plus one out-

bound port exposing the current speed of the robot to the system.

While the architecture was designed using the existing autonomous

wheelchair as a reference, this subsystem creates an abstraction of

the robot platform and can be replaced with a different platform to

transfer the wheelchair architecture to other robots.

3.5 Main system

The model of our architecture divides most of the elements in sub-

systems, while this is useful to create an abstraction in the architec-

ture, it is not strictly required, especially true in small architectures

or prototypes. In these cases, a model-based approach is still viable,

but it may require a less detailed description. In our architecture

there are two elements which are modeled directly in the root sys-

tem: the overseer node, which manages the global state machine

and it is not strictly related to any subsystem, and the virtual bus,

which represents the ROS communication infrastructure and all

the connections modeling topics are bound to this component.

4 THE NODE IMPLEMENTATION

As presented in [2], nodes are described using a base node as a start-

ing point. This template model includes some of the fundamental

element of a ROS node and provides additional features to make it

more robust and reliable. Fig. 2 shows a simplified UML model of

the C++ classes composing it.

4.1 Base node structure

The base node root superclass is called LifeCycle and it is a general

class for process life-cycle management based on a finite-state
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Figure 2: Simplified UML representation of the class struc-

ture implementing the nodes created using automatic code

generation.

machine. It is implemented using a list of pairs (source state and

destination state) to define transitions, no input is expected to

trigger the transition. Each state is bound to a function or class

method, which is executed after transition into that state; the main

execution loop of the node is bound to a state with a self-loop.

The design of the LifeCycle class is general and not bound to the

concept of ROS nodes: states, transitions, and functions are defined

by the developer; this is to simplify future variation or extensions

of the base node or to use the same class framework to implement

non-ROS components in the architecture.

The ROSNode class extends LifeCycle and implements all the

basic elements of a ROS node. Here, the actual life-cycle of the node

is defined and its methods are bound to their corresponding state.

The evolution of the node is quite straightforward.

• Init: this is the initial state of the the node and it comprises
two steps. The first step is a common initialization which

applies to every node, it initializes ROS and it defines the

asynchronous spinner 2. If this routine is successful, then a

specific initialization procedure of the node is executed; this

procedure is an abstract method implemented in the child

class.

• Running: if initializations are successful, the node moves
to this state. Since the spinner is asynchronous, this state

repeats at low frequency a check for errors or node termina-

tion. It is possible to change the main loop frequency using

a parameter, but it will only change how fast the node re-

acts, specifically, how much time will pass from the error

generation, or termination, to the actual state transition.

• Closing: ROS nodes can be closed as any other process by
sending termination signals. Since some nodes may handle

hardware connections or other routines requiring a specific

shutdown procedure, the base node switches to this state

after capturing a termination signal. This method contains

all the ROS default shutdown commands right after a call to

an abstract method for custom shutdown procedures.

• Error: whenever an error is detected, the transition to this
state is triggered. In the superclass this method is abstract

with a default implementation to manage some common

2http://wiki.ros.org/roscpp/Overview/Callbacks

initialization error; child classes can implement their own

version to manage specific error procedure and redirect the

workflow to the preferred state. For instance, in some cases

an initialization error has to force a shutdown, but in others

it is possible to solve it by reverting to the init state.

The base node implements a state notification system using ROS

services. In the init state a ROS service client is initialized, it calls a

service to notify its current state, the call happens at the beginning

of each new state. Given the structure of ROS, this system works

even if no active service server exists, moreover the use of services

simplifies the creation of specialized tools to monitor the life-cycle

of the running nodes. It is possible to customize two parameters in

the base node regarding state notifications: criticality and frequency.

A critical node needs to constantly notify its current state to confirm

it is alive and not in an error state; ROS is not an hard real-time

framework, but also in soft real-time applications it is important to

verify the liveness of the connections, e.g., when sending velocity

command to a robot, so the architecture can react accordingly if

a node does not respond. The frequency is how often the main

loop of the node is repeated; while this value is not connected

to any execution loop, since they work independently, it is an

important parameter in order to have nodes quickly react to errors

and termination.

Any newROS node can be implemented by extending the ROSNode

class. A developer, or in our case the automatic code generator,

needs to implement the abstract methods: prepare for initialization,

tearDown for shutdown procedure and errorHandling to manage

errors. Any ROS subcomponent (e.g., subscribers, publishers and

timers) has to be declared as attribute of the node, moreover, for

each component which has a callback (i.e., subscribers and timers)

a corresponding method has to be declared. When implementing

a ROS node, the correct place to initialize ROS components, bind

callbacks and retrieve ROS parameters is the prepare method, since

it is executed at the beginning of the life-cycle of the node, but after

the ROS initialization; this means that the ROS parameters server

is already available, but everything is yet to be executed.

This structure of a ROS node, based on a superclass encapsulating

the main ROS functionalities and the separation of framework code

from problem specific code, it is also useful when implementing

nodes that use communication channel different from ROS. This

will be shown in details with an example in Section 5.3, where we

will detail how to implement a low-level communication component

while being consistent with the callback-based ROS structure.

4.2 Internal state structure

A significant issue when new developers start implementing ROS

nodes is managing parameters and variables passing from one

callback to another. Parameters are often uncategorized, modified

during execution creating inconsistencies, hard-coded as constants

in the implementation; at the same time, variables are often declared

as global to grant visibility in the callbacks or duplicated in multiple

places. Moreover, declaring parameters and variables directly as

class members removes the distinction between framework code

and problem specific code.

Because of the aforementioned issues, while designing the struc-

ture of the base node, we also created a class to encapsulate the
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parameters and the problem specific variables of a node. This de-

scription of the internal state is based on a super class called Internal-

StateBase. This superclass only contains two members: a structure

for variables called VariableBase and a constant structure for pa-

rameters called ParametersBase. Both are defined as shared pointer

to minimize memory allocation when passing the internal state to

functions, moreover the parameters are constant, this guarantees

they will not change after initialization. The InternalStateBase class

is abstract; it includes a pure virtual method for initialization to

guarantee the entire internal state of the node is valid at the end

of the init state. By extending the InternalStateBase superclass it is

possible to implement a specific internal state for a node; moreover,

by extending one of the two structures, or both of them if necessary,

a designer can categorize parameters and variables to be used by

problem specific code.

4.3 Life-cycle and global state machine

As said before, the base class for the ROS node implements a strict

life cycle with state notification, therefore we implemented an over-

seer node, used to receive this notification, to track the current

state of each node, and, in our implementation, to manage a global

system-wide state machine. The node itself is designed with flex-

ibility in mind, it is possible to parametrize the definition of the

state machine, making it suitable for different architectures, and it

also offers two ways to trigger a state transition: shared memory

and ROS services.

In our architecture we use the global state machine to differen-

tiate between autonomous and manual driving; this requires the

transition to be fast and reliable, something ROS services cannot

guarantee, and this is why we implemented also the shared memory

mechanism. The choice between the two communication means

is completely transparent to the developer; indeed we developed

a general interface to encapsulate the communication with the

global state machine. During execution it is enough to trigger a

state transition (or query the current state), then, depending on

the system configuration, one or the other method is used. The

choice is based on the deployment of the node and it can vary at

start-up; specifically, if a node is executed on the same machine

of the overseer, then the shared memory approach it is used, oth-

erwise the communication goes through ROS services. The utility

of the interface is two-fold, not only it hides the selection of the

communication method, but it also separates the interaction with

the global state machine form the state machine itself, making our

overseer node just one of the possible implementations.

5 CODE GENERATION

The model describing our architecture (Fig. 1) includes two dif-

ferent types of nodes: existing ROS nodes and new nodes created

specifically for the robot. When considering the code generator, it

is necessary to create a further distinction in the second category:

nodes that operates using solely ROS for external communication

and nodes that requires unique form of communication (e.g., device

drivers).

5.1 Existing ROS nodes

One of the most important features of ROS is its community and

ecosystem, they provide a vast amount of already implemented

nodes covering plenty of functionalities.Given this, it is particularly

important not only to be able to include the existing nodes in our

model, but also to treat them correctly during the code genera-

tion procedure. On the modeling side we solved the problem by

describing existing ROS nodes only by their interfaces. This means

creating an AADL file representing the target package (i.e., joy) and

then defining all the nodes as component types, specifying expected

subscribed topics as inbound ports, published topics as outbound

ports, and services as subprogram calls. In principle, it could be

possible to do this process automatically by combining ROS graph

and ROS wiki analysis, nevertheless, some human intervention is

still required.

When generating the corresponding code, all nodes without an

implementation are considered as existing nodes, therefore, their

source code is not generated; these nodes are still part of the ar-

chitecture and therefore they are included in all the launch files

depending on the structure of the AADL system components. More-

over, the code generator automatically remaps the name of their

topics according to those defined in the model. At the current state

of development, we still do not manage ROS node parameters for

existing nodes directly in the model; we still need to decide if we

want to maintain complete support for ROS standard, including

YAML files, or implement a conversion from YAML to ASN.1, i.e.,

the format used for parameters definition.

5.2 Custom nodes

Custom nodes are modeled following the meta-model introduced

previously. Each one is a process extending the base ROS node and

ROS components are declared as threads. The code generator ana-

lyzes the AADL model and, if it contains all the necessary elements,

it generates the corresponding C++ ROS code. The code generator

is built to identify some specific types of thread, namely: timers,

subscribers, publishers (triggered periodically by timers), and sub-

scriber with an integrated publisher; these are already available as

templates when including the ROS AADL package in the model to

reduce the design time of custom nodes.

Let us take as an example the follower node, omitting the actual

algorithms, its inner working is quite straightforward: adjust an

input velocity command depending on the most recent laser scan

and republish it. In the design of the node this translates into a

subscriber for the laser and a subscriber for the velocity command,

this second component also includes a publisher which republishes

the adjusted input. Another example is themanual_mux, in this case

the node needs to relay one of the two manual input to the output

depending on the current global state of the system, moreover it

has to output a velocity command at a constant frequency event

if the sources are not constantly providing the input. The internal

structure, in this case, is composed by two subscribers, one for each

input source, and a publisher triggered by a timer running at a

specific frequency.

In both cases, the model also has a data subcomponent which

represents the internal state; here parameters and variables can

be included as properties in the model. To maintain the generality
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Figure 3: Graphical representation of the AADL model used

to describe the ratp_node. For clarity, in this representation

elements from the base node are omitted (i.e., main thread,

state machine, and internal state)

and portability of the model, parameters are described using ASN.1.

Other than the name and the type of the parameters, it is possible

to specify bounds or a default value. Later, at runtime, the designer

can use ASN.1 values to tune parameters specifically for the current

execution; these values have to be converted into a ROS compatible

format, while this procedure seems overkill, the model is created to

abstract from the underlying framework, therefore it is important

to maintain a framework-independent data definition. Regarding

variables, they are significantly more complex to manage with

respect to parameters, since there is no limit to the complexity of

the data structures used in a program. Therefore, they are defined

directly in the target programming language.

All the features described up to now are compatible with the

automatic code generator, it can analyze the model and generate

packages, launch files, dependencies, and source code. It also cre-

ates, if not already available, all the headers for the problem specific

code, that a domain expert can later use as a reference to implement

all the necessary algorithms. The code generator works both on

AADL and ASN.1, the same toolchain takes the entire model (node

descriptions and data descriptions) and creates a working node

ready for execution. While the support for various configuration

is already enough to cover most ROS nodes, the code generator is

an ongoing development and it does not yet generate some ROS

features. An example is ROS filters 3 to create synchronized sub-

scribers triggered by multiple topics. Nevertheless, we were able to

completely model and automatically generate all the nodes present

in our architecture, with the exception of one.

5.3 Special nodes

An exception to automatic code generation is the ratp_node; this

node is responsible of the communication between ROS and the

low-level hardware, which is done using a library provided by the

company making the PMK. While the model is powerful enough to

describe this type of communication, it is unfeasible to implement

the automatic code generation because of a very particular imple-

mentation that only works with this specific hardware component.

There are two key challenges here: first, be able to capture the struc-

ture of the node in the model, second, define the base node in such

a way that this type of special situation can be easily implemented.

3http://wiki.ros.org/filters

For the first case, AADL already offers a solution, because con-

nections, ports and threads can model any kind of communication

protocol or execution flow. Fig. 3 shows a graphical representation

of the AADL model of the ratp_node. In this case, we used an AADL

thread component to model the communication thread. This thread

has a bidirectional port, representing the communication with the

low-level hardware component, which matches the corresponding

port of the outer process. As additional input, it receives a veloc-

ity command and it outputs the current velocity and the current

set-point generated by the on-board joystick, these data flows are

modeled using directed ports. These ports are connected using

internal connections to the corresponding thread modeling the

ROS behavior, however there is an important distinction between

these threads and the usual ROS components depicted in the other

nodes: as visible from the model, threads behaving as subscribers

are triggered by a port on the communication thread instead of a

process-level port; in addition, a publisher-like thread output its

message directly to the ratp thread.

The similarities between ROS subscriber and publisher and the

structure of the ratp_node does not end with the model. To imple-

ment the node we started from the model of a similar version that

used only ROS components. Basically all the data flow coming from

the low-level hardware were modeled as ROS subscribers, while

velocity commands as a ROS publisher, then we used the code gen-

erator to create the skeleton of this node. Using the already created

structure as a reference, we mimicked the callback structure of

ROS to create the bridge between the low-level hardware and ROS

messages, by replacing the subscriber bindings with standard bind-

ings triggered by the communication thread. We also re-routed the

publisher to create messages compatible with the hardware com-

munication protocol. Moreover, implementing a separate thread

to handle hardware communication did not forced us to change

the underlying structure of the node since the base node is already

implemented using an asynchronous spinner. In conclusion, while

this node required a specific implementation by hand, it was easier

and more efficient to model a similar node, generate the code and

then implement some modification, instead of implementing it from

scratch.

6 ARCHITECTURES COMPARISON

With this use case we wanted to prove that is possible to realize

a full architecture using our proposed approach for model-based

development and code generation. To do so, we took an existing and

fully functional robot platform and used our toolchain to replicate

the functionalities with an automatically generated architecture

based on a model.

Fig. 4 shows the conceptual structure of the original architecture,

while Fig. 5 represent the ROS graph derived from the running

system; it is immediately visible that they do not match. The reason

is simple, as often happens when developing software, features were

added directly in the architecture without propagating them in the

original project. Later some of these features were removed, but

they left some dependencies behind. This problem is exacerbated

by the fact that in ROS there is no way to visualize and analyze

the structure of the architecture before runtime, all the tools to

explore the ROS graph of nodes and topics require the system to be
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Figure 4: PMK former software architecture.
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Figure 5: Nodes and topics connections map in the original

architecture.

running. Of course the use of a model does not intrinsically solve

the problem, since any developer can always ignore it and add

functionalities independently, but, combined with code generation,

it creates an environment which encourages good practices and

good designs.

Fig. 6 shows the runtime ROS graph of the architecture automat-

ically generated from the model. Other than using this graph to

confirm the connection between the model and the actual archi-

tecture, it is possible to use it to do a comparison with the former

architecture to identify design errors in the original one. Indeed,

given the lack of an underlying model, it was impossible to identify

most of these errors before runtime, since the ROS graph is not

available when the system is not running. This makes these errors

quite costly in terms of resources spent to fix them later in the

development cycle [8]. In addition, in the generated architecture,

topics and connections are defined at modeling stage. This lays the

foundation for possible analysis, such as the presence of detached

topic, or different message types in communications.

In the hand-written architecture three main issues are visible:

(1) There are some connections that are useless. For instance,

the heartbeat node communicates its state to an excessive

number of other nodes. This translates in a waste of re-

sources, with pointless messages clogging the communica-

tion layer. The same applies for the odometry, computed

and communicated by more than one node, this could cause

inconsistencies.

(2) There is a circular dependency between nodes odom_pub

and amcl. The former publishes the odometry on tf, read

then by amcl, but it also expects an initial pose coming from

����������

�����������

�	���������
�	���
�����

��
�	

�
��������

�
��������

�����
��

���������

�
����	�
��

�����������	���������

����������

�����������
�����

�����

�
�

�������
�

��
����	

����


����

������
�

�����
� �
����	��
�
�����

��

���������

�
������������	

���		���������

�
����	��
�

���		������
�

Figure 6: Nodes and topics connectionsmap in the generated

architecture.

amcl. This causes an inconsistent initialization that could

possibly lead to unexpected results and behaviors.

(3) Nodes laserscan_multi_merger and scanmatcher are detached

from the rest of the architecture. Actually, they are a dupli-

cate of another node, scanner_multi_merger_center, meaning

they are not used and their running cycles only waste com-

putational power.

Analyzing the ROS graph is useful to provide an indicator of the

quality of the software design, but it gives no information regarding

the functionalities of the system. Moreover, bad design choices or

design flaws not always translate into missing or faulty behaviors.

For example, even with the problems of the hand-written architec-

ture highlighted before, the wheelchair was capable of functioning

in full autonomous mode with no serious issues, except for minor

problems caused by a faulty communication with the low-level con-

trol module. To provide an empirical proof of the correctness of the

generated architecture, we performed a test in autonomous mode,

comparing the wheelchair behavior running with the hand-written

architecture, against the generated one. The paths followed are visi-

ble in Fig. 7. The two routes are comparable, with a strong similarly

also in the wheelchair direction, plotted using oriented arrows. This

result is useful to understand that expected behavior, namely the

PMK enhancements, can be reached and obtained without writing

the ROS nodes code, but only the application specific one and the

software architecture AADL model.

7 DISCUSSION AND RELATEDWORKS

Developing a toolchain that goes from the definition of a model to

a complete implementation is a difficult task. It requires a vertical

expertise that goes from deep understanding of model-based design,

to detailed knowledge of the target domain, through a solid base of

software engineering. That is why our approach does not have the

ambition of being the definitive solution to the problem of software

development in robotics, but it is an effort to produce something

closer to the developers and the problem experts, instead of focusing

only on the architectural view. The choice of AADL is also related to

this, since the language offers tools to model hardware components

and to do low-level system analysis, like latency estimation and

resource consumption. This type of analysis is the next step of

our work, especially now that we have completed our toolchain

and can strongly correlate the model with the implementation.

Some work using AADL to estimate the latency in a robot has

been already done [3], we aim to expand this by adding resource
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Hand-written software
Generated software

Figure 7: Path followed by the wheelchair in autonomous

driving mode. The red arrows show the hand-written archi-

tecture route, the blue arrows the generated one. It is visible

that they are comparable even though the underlying soft-

ware is different.

consumption (i.e., bandwidth, CPU) and ROS-specific analysis (i.e.,

topic compatibility).

Code generation for robotic middlewares it is not a novelty ei-

ther and various solution exists to automatically generate ROS code.

For example, Matlab provides the Robotics System Toolbox that

generates C++ code for a standalone ROS node from a Simulink

model, but the results are suitable only for prototyping since it is

unnecessarily verbose and rely on native Matlab functions. Addi-

tionally, some robotics frameworks are built around the concept of

model-driven development and automatic code generation. Smart-

Soft is a service-oriented component-based approach for robotics

software based on communication patterns. The development of

components in SmartSoft is based on a DSL, derived from UML,

which is used as a starting point to automatically generate various

artifacts which lead to the complete components. Other middle-

wares, like C-Forge [14] and RoCK, use languages with different

level of formality to partially generate code. While all these offer

a complete or almost complete toolchain from the model to the

implementation, they have an obvious downside: the entire process

is implemented with the aim of working with a specific middleware.

This means they cannot be adapted to a different middleware or

used for more general approaches. Some more general approaches

exist, an example is BRIDE [7], one of the technological products of

the BRICS project, or the work presented in [1], but in both cases

most of the effort is at the architectural level, and they lack ways

to model the inner working of the components.

8 CONCLUSIONS

In this work we presented a practical use case on how a model-

based approach can be used to completely model and automatically

generate the code of a robotic platform. The model is written using

AADL, it can describe the hardware devices (i.e., sensor, control

interfaces), the software modules and the connections between

each component. The target middleware used for code genera-

tion is ROS, in particular we provided a basic implementation of

a ROS node that includes a well defined life-cycle, a distinction

between framework and problem-specific implementation, and a

strict description of variables and parameters. With this example

architecture we gave an overview of the most common nodes that

appears in a ROS-based architecture, namely, already implemented

nodes from existing packages, new custom node that rely only on

ROS for communication, and nodes that requires a special approach

for low-level hardware interactions. With the experimental part,

we have shown how the architecture generated automatically not

only can replicate exactly the functionality of the one developed by

hand, but also highlighted design problems present in the original

implementation.
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