
On the Software Engineering Challenges of
Applying Reactive Synthesis to Robotics

Shahar Maoz
School of Computer Science, Tel Aviv University, Israel

Jan Oliver Ringert
Department of Informatics, University of Leicester, UK

ABSTRACT

Reactive synthesis is an automated procedure to obtain a correct-by-

construction reactive system from its temporal logic specification.

This short paper discusses the software engineering challenges in

applying reactive synthesis to robotics, beyond the synthesis algo-

rithms themselves, including the challenge of writing declarative

specifications, the challenge of abstraction of data and time, and

the challenge of availability of an adequate development process

supported by related tools. The identification and description of the

challenges are based on our experience in building a development

environment for reactive synthesis and applying it to the construc-

tion of about 10 different autonomous Lego robots. We describe the

challenges using concrete examples from one of the robots built in

our lab.

CCS CONCEPTS

• Software and its engineering→ Formal methods; Software ver-

ification;

KEYWORDS

reactive synthesis, GR(1)

ACM Reference Format:

Shahar Maoz and Jan Oliver Ringert. 2018. On the Software Engineer-

ing Challenges of Applying Reactive Synthesis to Robotics. In RoSE’18:

IEEE/ACM 1st International Workshop on Robotics Software Engineering , May

28-June 28 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3196558.3196561

1 INTRODUCTION

Reactive synthesis is an automated procedure to obtain a correct-

by-construction reactive system from its temporal logic specifica-

tion [26]. Rather than manually constructing an implementation

and using model checking to verify it against a specification, syn-

thesis offers an approach where a correct implementation of the

system is automatically obtained for a given specification, if such

an implementation exists. In the case of reactive synthesis, an im-

plementation is typically given as a controller, i.e., an automaton

that accepts input from the environment (e.g., from sensors) and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RoSE’18, May 28-June 28 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5760-9/18/05. . . $15.00
https://doi.org/10.1145/3196558.3196561

produces the system’s output (e.g., commands for actuators) to

always satisfy the specification.

Reactive synthesis has been studied extensively in the formal

methods and software engineering research literature, see, e.g., [1–

3, 6, 13, 15, 19, 21, 23]. While synthesis from Linear Temporal Logic

(LTL) specifications [26] is generally considered impractical due its

high computational complexity (double exponential in the length

of the formula), synthesis from fragments of LTL, e.g., General

Reactivity of Rank 1 (GR(1)) [3], has shown to allow for efficient

sybolic implementations of synthesis algorithms.

One potential application domain for reactive synthesis is robot-

ics. Indeed, in the last few years, a number of research groups have

investigated this direction, providing initial results. Kress-Gazit et

al. [14, 16, 30] applied reactive synthesis for robotics mission plan-

ning, where a synthesized controller guarantees a robot achieves

a given task. Maniatopoulos et al. [17] present an approach to au-

tomatically generate code implementation of high-level robotic

behavior using synthesis. They demonstrated their approach on

the Atlas humanoid robot in the context of the 2015 DARPA Ro-

botics Challenge. Wongpiromsarn et al. [31] use GR(1) synthesis

in TuLiP, a software toolbox for synthesis of embedded control

software with application to robotics mission planning. Gritzner

and Greenyer [10] have investigated the use of reactive synthesis to

generate PLC code for industrial robots. We have applied reactive

synthesis in a case study for synthesizing a forklift controller [20]

(used here as our running example, see Sect. 2). Furthermore, vari-

ous synthesis tools have been developed independent of the robotics

domain, e.g., Bloem et al. [2] developed RATSY, a requirement anal-

ysis tool with GR(1) synthesis and Ehlers and Raman [6] developed

the GR(1) synthesis framework Slugs, which has been extended

with a number of plugins for advanced analyses.

While these show some potential for future success, a wide

chasm remains to be crossed before reactive synthesis becomes a

tool in the hands of robotics software engineers.

In this short paper we discuss the key software engineering

challenges in applying reactive synthesis to robotics, beyond the

synthesis algorithms themselves. First, the challenge of writing

declarative specifications. Second, the challenge of abstraction of

data and time. Finally, the challenge of availability of an adequate

development process supported by related tools.

We demonstrate these challenges via an example robot, one of

many built in our lab at Tel Aviv University, where we have taught

two project classes (in 2015 and in 2017), in which small teams

of 3rd year Computer Science undergraduate students have used

our synthesis environment in a semester long project, to develop

about 10 different autonomous Lego robots, which the students

actually built and run1. From these classes, we have collected over

200 versions of specifications, all written by these students. Our

1A short video is available in https://youtu.be/JTTP3L9G6ko

17

2018 ACM/IEEE 1st International Workshop on Robotics Software Engineering

RoSE’18, May 28-June 28 2018, Gothenburg, Sweden Shahar Maoz and Jan Oliver Ringert

choice of Lego as the underlying robotics technology for the class

and for this research was motivated by its relatively low cost and

its modularity, allowing us to gain experience from several differ-

ent robots, e.g., a robot sorting Lego pieces by color, an elevator

servicing different floors, a self parking Lego car, performing very

different tasks. Furthermore, although different in detail and scale,

the use of the Lego robots provided us with concrete examples of

some of the challenges one expects to encounter with real-world

robotic technologies, such as the inaccuracy of sensor readings,

and the limitations in terms of battery, memory, and computation

power.

2 RUNNING EXAMPLE

We start off with a running example of a specification for an au-

tonomous forklift. The forklift is an actual Lego robot2 shown on

the left side of Fig. 1. We have constructed and experimented with

this robot in our lab (see [20]).

2.1 Forklift Overview and Architecture

The forklift has a sensor to determine whether it is at a station, two

distance sensors to detect obstacles and cargo, and an emergency

button to stop it. It has two motors to turn the left and right wheels

and one motor to lift the fork. Consider an initial set of informal

requirements for the behavior of the forklift:

(1) Do not run into obstacles.

(2) Only pick up or drop cargo at stations.

(3) Always keep on delivering cargo.

(4) Never drop cargo at the station where it was picked up.

(5) Stop moving if emergency off is pressed.

The logical software architecture of the forklift is depicted as a

component and connector model (see e.g., [28] and [11], for con-

cepts of component and connector models) in Fig. 1 (b). The com-

ponents on the left side are hardware wrappers that read sensor

values and publish them as messages on their output ports. The

output ports of the sensor components are connected to input ports

of component Controller (names and types labeled on ports in

Fig. 1). The output ports of component Controller (names and

types labeled on ports in Fig. 1) are connected to three components

on the right that receive commands and encapsulate access to the

actuators (here different motors) of the forklift.

The execution of the robot is performed in a control cycle: read

sensor data, execute controller, perform actions. The only delays

during execution of cycles are introduced by computation times of

components (in ranges of milliseconds).

We focus on the development of component Controller. This

component is the most complicated in terms of reactive behavior

as it contains the systems logic of how actuators are controlled to

realize desired system behavior.

2.2 Example Specification

We show excerpts of a specification for the forklift robot in Lst. 1.

The specification is written in the Spectra language [22]. From

2Robot based on these building instructions: http://www.nxtprograms.com/NXT2/
forklift/steps.html

the complete specification we can directly synthesize an imple-

mentation of component Controller (from Fig. 1). The specifi-

cation starts by declaring environment controlled variables (in-

puts of Controller) and system controlled variables (outputs of

Controller).

We introduce some short names for expressions in a define

section in ll. 15-23. As an example, we define stopping as an abbre-

viation for both motors receiving the command STOP and we define

deliverUnlessBlocked as an abbreviation for dropping cargo or

being blocked by the emergency off button or a low obstacle.

The main part of the specification are assumptions on the behav-

ior of the environment and guarantees that a system implementa-

tion has to satisfy if all the assumptions hold. Assumptions and guar-

antees that start with the temporal operator G have to hold on all

transitions between states, e.g., the assumption stationsDontMove

in ll. 26-27 expresses that in all states where the forklift is stop-

ping the value read by the station sensor does not change in the

next state. Assumptions and guarantees with the temporal operator

GF must be satisfied repeatedly after any finite number of transi-

tions, e.g., the guarantee keepDelivering in ll. 48-49 states that

the forklift has to repeatedly deliver cargo unless it is repeatedly

blocked.

We have added the five informal requirements from above as

comments to guarantees of the specification that most closely re-

semble each requirement. The complete specification consists of 9

assumptions and 12 guarantees and it takes one second to synthe-

size an implementation from it.

3 CHALLENGES

We now list the three challenges that we have identified. For each,

we first explain the challenge in general terms, then we illustrate it

on examples relating to the forklift robot, and finally we mention

existing works and how they relate to the presented challenge.

3.1 Writing declarative specifications

A major software engineering challenge for applying reactive syn-

thesis is writing of declarative specifications. In a robotics software

engineering process based on synthesis specifications replace code.

Software components that are traditionally implemented manually

are now synthesized automatically. However, shifting the focus

on declarative specifications brings various challenges. First, there

is currently little experience and almost no training for writing

declarative specifications. Second, specification languages from the

formal methods community, e.g., Linear Temporal Logic (LTL) [25]

(which can be seen as the assembly language for synthesis), are

not friendly to be used by engineers and specifying reasonable con-

straints on the robot’s behavior may lead to very complex formulas.

Finally, declarative specifications for non-trivial robot behavior

require engineers to make assumptions on the behavior of the en-

vironment the robot operates in explicit. Inadequate assumptions

and guarantees can lead to no or even undesired implementations

of robot behavior.

Example 1. When executing synthesized controllers from earlier

versions of the specification shown in Lst. 1 the forklift destroyed

the physical lifting mechanism because a synthesized controller

issued the lifting command when the robot had already lifted cargo.

18

On the Software Engineering Challenges of Applying Reactive Synthesis to Robotics RoSE’18, May 28-June 28 2018, Gothenburg, Sweden

�������	

	�	���

����

�	�	���

��

���	��	������
����	

���	����
�

��������	

���	���

����
���	

��

���	���

����
�����

��

��		��

�������		��

��	���
�����	

��	���
��
�	

 ���
��
�	�	���

���	���

�
��

���	���

�����

 ���
��

�����

 ���
��
���	���

��	�����
��
�	

��	�����
�����	

���	���
���	

��� � �

Figure 1: (a) The Lego forklift robot with four sensors and three actuators. (b) The component and connector model of the soft-

ware architecture of the robotwithwrappers for sensors and actuators. An implementation of themain component Controller

will be synthesized

While an engineer writing imperative code would intuitively un-

derstand that over-lifting the fork is dangerous, in the declarative

specification we forgot to formulate a constraint expressing this

knowledge. The synthesizer thus had no way to know of the phys-

ical system’s limitations. Later, to formulate the corresponding

constraint, we have added the monitor loaded to keep track of the

state of the fork and the guarantee noOverlifting (Lst. 1, ll. 69-70)

to prevent commands that can damage the mechanism.

Example 2. Specifications describe temporal relations between

system states. These relations easily become complex to describe

in a declarative way. As an example, recall requirement (4) to never

drop cargo at the same station that it was picked up. We formulate

as a the temporal constraint that the between lifting cargo and drop-

ping cargo the forklift has to leave the station. More technically, to

express that a predicate p = !atStation always has to be satisfied

at least once between the satisfaction of predicates q = lifting

and r = dropping we could write the following LTL formula:

G(q & !r -> (!r W (p & !r)))

Intuitively, φ Wψ expresses that either φ holds forever or φ holds in

every state untilψ holds in at least one state. Note that the temporal

operator W is nested in the scope of the operator G and the predicate

r is repeated multiple times. These LTL formulas can easily become
unreadable, see e.g., the LTL specification patterns of Dwyer et

al. [5] collected from existing specifications. In our example specifi-

cation in Lst. 1 we use pattern names and instantiations [19], e.g.,

in guarantee leaveStationForDelivery (Lst. 1, ll. 52-54), instead

of their LTL equivalent.

Example 3. An important part of a specification are assumptions

on environment behavior. Note that our initial list of five informal

requirements formulated only guarantees. Any non-trivial reactive

behavior specification will require assumptions that promise that

the environment will react to the behavior of the system, e.g., in

order to ensure that packages will be delivered only on stations,

the forklift will assume that if it stops on a station the station will

not magically disappear (assumption stationsDontMove, Lst. 1,

ll. 26-27). In addition, we might want to assume that the forklift

always eventually finds a station, i.e., GF station. However, the

combination of these two assumptions might lead to a system im-

plementation that forces the environment to violate an assumption:

the robot can stop forever, once it is not on a station and the envi-

ronment will then fail to satisfy the assumption GF station.

Works Related to this Challenge. Most recent works in the area of

applying reactive synthesis are indirectly related to the challenge

of writing declarative specifications. In works by Kress-Gazit et

al. [14, 16, 30] the specifications are written with primitives spe-

cific to path planning on a grid; or can be extracted using natural

language processing [16]. In [17] specifications for synthesis are

generated from high-level models created by engineers. Fillippidis

et al. [8] present a multi-paradigm specification language that mixes

declarative and imperative elements. We have recently [19] shown

how to support most of the well-known LTL specification patterns

of Dwyer et al. [5] as specification elements for GR(1) synthesis.

3.2 Abstraction of data and time

A second major software engineering challenge for applying reac-

tive synthesis to robotics system development is the necessity for

abstraction of complex data and time. While this abstraction is a

general challenge for robotics software development, properties

of the underlying formalisms of reactive synthesis add additional

complexity. First, the running time of a synthesis algorithm typ-

ically depends on the statespace — including inputs and outputs

— of the specified system. As an example, the popular GR(1) syn-

thesis algorithm [3], used in many synthesis tools, has complexity

quadratic in the statespace where the statespace is exponential in

the numbers of input and output variables. Thus, abstraction of

data in the specification is often needed to make synthesis tractable.

Second, the temporal relations expressed in specifications refer to

19

RoSE’18, May 28-June 28 2018, Gothenburg, Sweden Shahar Maoz and Jan Oliver Ringert

1 type Distance = {FAR , CLOSE};
2 type MotorCmd = {FWD , STOP , BWD};
3 type LiftCmd = {LIFT , DROP , NIL};
4

5 env boolean station;
6 env Distance sense;
7 env Distance cargo;
8 env boolean emgOff;
9 env boolean liftAck;
10

11 sys MotorCmd mLeft;
12 sys MotorCmd mRight;
13 sys LiftCmd lift;
14

15 define
16 stopping := mLeft = STOP & mRight = STOP;
17 backing := mLeft = BWD & mRight = BWD;
18 turning := mLeft != mRight;
19 forwarding := mLeft = FWD & mRight = FWD;
20 dropping := lift = DROP;
21 lifting := lift = LIFT;
22 lowObstacle := (cargo = CLOSE & !station);
23 deliverUnlessBlocked := (dropping | emgOff | lowObstacle);
24

25 // station does not change when stopping
26 asm stationsDontMove:
27 G (stopping -> station = next(station));
28

29 // driving away from an obstacle will eventually clear
30 // the sensors unless the forklift stops or goes straight
31 asm driveAwayFromCargoAndObstacles:
32 pRespondsToSUnlessT(backing | turning , // =s, trigger
33 sense=FAR & cargo=FAR , // =p, response
34 forwarding | stopping); // =t, unless
35

36 // (1) Do not run into obstacles
37 gar dontHitObstacles:
38 G ((sense = CLOSE | lowObstacle) -> ! forwarding);
39

40 gar noTurningCloseToCargo:
41 G (cargo=CLOSE -> !turning);
42

43 // (2) Only pick up or drop cargo at stations.
44 gar liftDropAtStationOnly:
45 G ((lifting | dropping) -> atStation);
46

47 // (3) Always keep on delivering cargo.
48 gar keepDelivering:
49 GF deliverUnlessBlocked;
50

51 // (4) Never drop cargo at the station where it was picked up.
52 gar leaveStationForDelivery:
53 // p=! atStation between q=lifting and r=dropping
54 pBecomesTrue_betweenQandR (!station , lifting , dropping);
55

56 // (5) Stop moving if emergency off is pressed.
57 gar emergencyOff:
58 G (emgOff -> (stopping & lift=NIL));
59

60 // monitor loaded is true iff we cargo loaded & acknowledged
61 monitor boolean loaded {
62 !loaded;
63 G (liftAck & !loaded -> next(loaded));
64 G (liftAck & loaded -> next(! loaded));
65 G (! liftAck -> loaded = next(loaded));
66 }
67

68 // no lifting when loaded and no dropping when not loaded
69 gar noOverlifting:
70 G ((loaded -> !lifting) & (! loaded -> !dropping));

Listing 1: Excerpts from a specification of the reactive

behavior of component Controller of the forklift robot

shown in Fig. 1. A complete version of the specification

is available from http://smlab.cs.tau.ac.il/syntech/forklift/.

See [22] for a language reference of the Spectra language

used in this listing.

a sequence of states and not to points in the physical time a robot

operates in. Thus, an engineer has to find suitable mechanisms and

abstractions to relate physical time to a virtual sequence of states.

Example 4. The forklift robot shown in Fig. 1 is equipped with

distance sensors that measure distances up to 255cm with a resolu-

tion of 1cm. Including many input variables with large ranges in a

specification could render traditional synthesis algorithms imprac-

tical. When developing the specification shown in Lst. 1 we have

introduced an abstraction of values smaller than 20cm to CLOSE and

values greater or equal to 20cm to FAR. The abstraction is performed

by component DistanceSensor and the environment variables in

the specification in Lst. 1 only use the type Distance = FAR,

CLOSE, e.g., for variable sense in guarantee dontHitObstacles

(Lst. 1, ll. 37-38).

Example 5. Consider the scenario where the forklift delivers

cargo. Intuitively we would want to express that the forklift needs

to back up before it can turn to drive away from cargo (otherwise

the fork might not be clear from cargo). In the forklift specification

temporal relations are over states and execution steps but it is unre-

alistic to assume that backing up for one execution stepwill clear the

fork from cargo. Specifications have to consider physical processes

that take time not measured in execution steps. To address this chal-

lenge, we added the guarantee noTurningCloseToCargo (Lst. 1,

ll. 40-41) and the assumption driveAwayFromCargoAndObstacles

(Lst. 1, ll. 31-34). The assumption expresses that after some finite

time of backing up or turning, cargo and obstacles will no longer

block the sensors. The synthesizer will determine that backing up

to clear cargo is the only viable option to continue.

Works Related to this Challenge. Recent works have started to

address challenges of abstraction in different application domains

of reactive synthesis. Murray et al. [7, 31] have presented Tulip

for synthesizing hybrid reactive systems where piecewise affine

dynamics are automatically abstracted. Walker and Ryzhyk [29]

presented predicate abstraction and refinement for reactive synthe-

sis of device drivers where large memory registers are automatically

abstracted. Raman et al. [27] formalized a pattern for supporting

the execution of robot actions with arbitrary timing for reactive

synthesis (our solution in Example 5 is similar to their approach).

3.3 Development process and tools

A third major challenge for applying reactive synthesis to robotics

concerns the development process and the related tool support.

Although the synthesized implementation is correct with regard to

the specification, the specification itself may not correctly represent

the intentions of the engineer who wrote it. Moreover, specifica-

tions, like code, evolve over time, as bugs are corrected and new

features are added. Thus, only having a synthesis tool that provides

correct-by-construction implementation of the specification does

not suffice. Effective use of reactive synthesis implies major changes

to traditional development processes and revised developer tasks,

which in turn call for new tool support.

Example 6. A specification may be over constrained, in which

case it is unrealizable, i.e., there exists an environment that meets

the specified assumptions and can force the system to violate some

20

of the specified guarantees. For example, consider the following

guarantee, expressing the requirement to go forward when no

obstacle is detected:

G (!lowObstacle -> forwarding)

This guarantee, together with guarantee emergencyOff (Lst. 1,

ll. 57-58), overconstrain possible behaviors when there is no obsta-

cle and the emergency off is pressed. The specification would be

unrealizable, and so no implementation will be synthesized.

Example 7. The problem described in Example 3 above is a case

of non-well-separation [12], where a synthesized controller may

satisfy the specification by forcing any environment to violate

the assumptions (rather than by satisfying the guarantees). From

a development process perspective, this problem may be worse

than the above mentioned problem of unrealizability: since the

synthesizer is able to output a controller, there is no hint of the

problem, which will only appear later, during testing, or worse, in

production.

Example 8. An earlier version of the forklift did not include an

emergency off feature. To reflect the new requirement in the speci-

fication, we added the guarantee emergencyOff (Lst. 1, ll. 57-58).

Note that this single guarantee affects the behavior of a synthesized

controller in almost all of its states. Throughout development of a

specification, many similar changes are expected.

Works Related to this Challenge. Some recent works have started

to address a few aspects of this challenge. For example, to deal with

unrealizable specifications, authors have shown how to compute

an unrealizable core [4, 13], i.e., a minimal subset of the guarantees

for which the specification is already unrealizable. The core is

intended to help the engineer by localizing the problem. Other

works suggested also the computation and presentation of a counter-

strategy [13, 23, 24], which shows how a synthesized environment

can force any system implementation to violate the specification.

We have recently presented the JVTS, a symbolic counter-strategy

representation, which is typically much smaller, simpler, and can

be computed faster than concrete counter-strategies [15].

To deal with non-well-separation, we have recently presented a

tool to automatically identify different cases of non-well-separation

and provide the engineer with a non-well-separation core, i.e.,

a minimal subset of the assumptions that is already non-well-

separated [21].

To the best of our knowledge, no work has yet addressed other

aspects of the development process, such as dealing with the evolu-

tion of specifications and testing of synthesized controllers.

4 CONCLUSION

In this short paper we have discussed three major software en-

gineering challenges for the application of reactive synthesis to

robotics. We illustrated the challenges using 8 concrete examples,

taken from a specification of a Lego forklift built in our lab. We

hope this work will encourage discussion and provide directions

for future work in this field.

The work is part of a larger project3 on bridging the gap between

the theory and algorithms of reactive synthesis on the one hand

3SYNTECH: http://smlab.cs.tau.ac.il/syntech/

and software engineering practice on the other. As part of this

project we are building engineer-friendly tools for writing and

understanding temporal specifications for reactive synthesis (see,

e.g., [9, 15, 18–21]).

ACKNOWLEDGEMENTS

This work has received funding from the European Research Coun-

cil (ERC) under the European Union’s Horizon 2020 research and

innovation programme (grant agreement No 638049, SYNTECH).

REFERENCES
[1] Rajeev Alur, Salar Moarref, and Ufuk Topcu. 2013. Counter-strategy guided

refinement of GR(1) temporal logic specifications. In FMCAD. IEEE, 26–33. http:
//dx.doi.org/10.1109/FMCAD.2013.6679387

[2] Roderick Bloem, Alessandro Cimatti, Karin Greimel, Georg Hofferek, Robert
Könighofer, Marco Roveri, Viktor Schuppan, and Richard Seeber. 2010. RATSY -
A New Requirements Analysis Tool with Synthesis. In CAV (LNCS), Vol. 6174.
Springer, 425–429. https://doi.org/10.1007/978-3-642-14295-6_37

[3] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar.
2012. Synthesis of Reactive(1) Designs. J. Comput. Syst. Sci. 78, 3 (2012), 911–938.
https://doi.org/10.1016/j.jcss.2011.08.007

[4] Alessandro Cimatti, Marco Roveri, Viktor Schuppan, and Andrei Tchaltsev. 2008.
Diagnostic Information for Realizability. In VMCAI (LNCS), Vol. 4905. Springer,
52–67. https://doi.org/10.1007/978-3-540-78163-9_9

[5] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns in
Property Specifications for Finite-State Verification. In ICSE. ACM, 411–420.

[6] Rüdiger Ehlers and Vasumathi Raman. 2016. Slugs: Extensible GR(1) Syn-
thesis. In CAV (LNCS), Vol. 9780. Springer, 333–339. https://doi.org/10.1007/
978-3-319-41540-6_18

[7] Ioannis Filippidis, Sumanth Dathathri, Scott C. Livingston, Necmiye Ozay, and
Richard M. Murray. 2016. Control design for hybrid systems with TuLiP: The
Temporal Logic Planning toolbox. In 2016 IEEE Conference on Control Applications,
CCA 2016, Buenos Aires, Argentina, September 19-22, 2016. IEEE, 1030–1041. https:
//doi.org/10.1109/CCA.2016.7587949

[8] Ioannis Filippidis, Richard M. Murray, and Gerard J. Holzmann. 2015. A multi-
paradigm language for reactive synthesis. In Proceedings Fourth Workshop on
Synthesis, SYNT 2015, San Francisco, CA, USA, 18th July 2015. (EPTCS), Pavol
Cerný, Viktor Kuncak, and Parthasarathy Madhusudan (Eds.), Vol. 202. 73–97.
https://doi.org/10.4204/EPTCS.202.6

[9] Elizabeth Firman, Shahar Maoz, and Jan Oliver Ringert. 2017. Performance
Heuristics for GR(1) Synthesis and Related Algorithms. CoRR abs/1712.01103
(2017). arXiv:1712.01103 http://arxiv.org/abs/1712.01103

[10] Daniel Gritzner and Joel Greenyer. 2017. Synthesizing Executable PLC Code
for Robots from Scenario-Based GR(1) Specifications. In Software Technologies:
Applications and Foundations - STAF 2017 Collocated Workshops, Marburg, Ger-
many, July 17-21, 2017, Revised Selected Papers (Lecture Notes in Computer Sci-
ence), Martina Seidl and Steffen Zschaler (Eds.), Vol. 10748. Springer, 247–262.
https://doi.org/10.1007/978-3-319-74730-9_23

[11] Arne Haber, Jan Oliver Ringert, and Bernard Rumpe. 2012. MontiArc - Architec-
tural Modeling of Interactive Distributed and Cyber-Physical Systems. Technical
Report AIB-2012-03. RWTH Aachen. http://aib.informatik.rwth-aachen.de/2012/
2012-03.pdf

[12] Uri Klein and Amir Pnueli. 2010. Revisiting Synthesis of GR(1) Specifications.
In Haifa Verification Conference (HVC) (LNCS), Vol. 6504. Springer, 161–181.
https://doi.org/10.1007/978-3-642-19583-9_16

[13] Robert Könighofer, Georg Hofferek, and Roderick Bloem. 2013. Debugging
formal specifications: a practical approach using model-based diagnosis and
counterstrategies. STTT 15, 5-6 (2013), 563–583. https://doi.org/10.1007/
s10009-011-0221-y

[14] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. 2009. Temporal-
Logic-Based Reactive Mission and Motion Planning. IEEE Trans. Robotics 25, 6
(2009), 1370–1381. https://doi.org/10.1109/TRO.2009.2030225

[15] Aviv Kuvent, Shahar Maoz, and Jan Oliver Ringert. 2017. A symbolic justice
violations transition system for unrealizable GR(1) specifications. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, Eric Bodden, Wilhelm Schäfer,
Arie van Deursen, and Andrea Zisman (Eds.). ACM, 362–372. https://doi.org/10.
1145/3106237.3106240

[16] Constantine Lignos, Vasumathi Raman, Cameron Finucane, Mitchell P. Mar-
cus, and Hadas Kress-Gazit. 2015. Provably correct reactive control from nat-
ural language. Auton. Robots 38, 1 (2015), 89–105. https://doi.org/10.1007/
s10514-014-9418-8

On the Software Engineering Challenges of Applying Reactive Synthesis to Robotics RoSE’18, May 28-June 28 2018, Gothenburg, Sweden

21

RoSE’18, May 28-June 28 2018, Gothenburg, Sweden Shahar Maoz and Jan Oliver Ringert

[17] Spyros Maniatopoulos, Philipp Schillinger, Vitchyr Pong, David C. Conner, and
Hadas Kress-Gazit. 2016. Reactive high-level behavior synthesis for an Atlas
humanoid robot. In 2016 IEEE International Conference on Robotics and Automation,
ICRA 2016, Stockholm, Sweden, May 16-21, 2016, Danica Kragic, Antonio Bicchi,
and Alessandro De Luca (Eds.). IEEE, 4192–4199. https://doi.org/10.1109/ICRA.
2016.7487613

[18] Shahar Maoz, Or Pistiner, and Jan Oliver Ringert. 2016. Symbolic BDD and
ADD Algorithms for Energy Games. In Proceedings Fifth Workshop on Synthesis,
SYNT@CAV 2016, Toronto, Canada, July 17-18, 2016. (EPTCS), Ruzica Piskac and
Rayna Dimitrova (Eds.), Vol. 229. 35–54. https://doi.org/10.4204/EPTCS.229.5

[19] Shahar Maoz and Jan Oliver Ringert. 2015. GR(1) synthesis for LTL specification
patterns. In ESEC/FSE. ACM, 96–106. https://doi.org/10.1145/2786805.2786824

[20] Shahar Maoz and Jan Oliver Ringert. 2015. Synthesizing a Lego Forklift Controller
in GR(1): A Case Study. In Proc. 4th Workshop on Synthesis, SYNT 2015 colocated
with CAV 2015 (EPTCS), Vol. 202. 58–72. https://doi.org/10.4204/EPTCS.202.5

[21] Shahar Maoz and Jan Oliver Ringert. 2016. On well-separation of GR(1) specifi-
cations. In FSE. ACM, 362–372. https://doi.org/10.1145/2950290.2950300

[22] Shahar Maoz and Jan Oliver Ringert. 2018. Spectra Language and Spectra Tools
User Guide. Available from http://smlab.cs.tau.ac.il/syntech/spectra/. (2018).
version: March 2018.

[23] Shahar Maoz and Yaniv Sa’ar. 2013. Counter play-out: executing unrealizable
scenario-based specifications. In ICSE. IEEE / ACM, 242–251. http://dl.acm.org/
citation.cfm?id=2486821

[24] Shahar Maoz and Yaniv Sa’ar. 2013. Two-Way Traceability and Conflict Debug-
ging for AspectLTL Programs. T. Aspect-Oriented Software Development 10 (2013),
39–72. https://doi.org/10.1007/978-3-642-36964-3_2

[25] Amir Pnueli. 1977. The Temporal Logic of Programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October -
1 November 1977. IEEE Computer Society, 46–57. https://doi.org/10.1109/SFCS.
1977.32

[26] Amir Pnueli and Roni Rosner. 1989. On the Synthesis of a Reactive Module. In
POPL. ACM Press, 179–190.

[27] Vasumathi Raman, Nir Piterman, and Hadas Kress-Gazit. 2013. Provably cor-
rect continuous control for high-level robot behaviors with actions of arbi-
trary execution durations. In 2013 IEEE International Conference on Robotics
and Automation, Karlsruhe, Germany, May 6-10, 2013. IEEE, 4075–4081. https:
//doi.org/10.1109/ICRA.2013.6631152

[28] Richard N. Taylor, Nenad Medvidovic, and Eric Dashofy. 2009. Software Architec-
ture: Foundations, Theory, and Practice. Wiley.

[29] Adam Walker and Leonid Ryzhyk. 2014. Predicate abstraction for reactive syn-
thesis. In Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne,
Switzerland, October 21-24, 2014. IEEE, 219–226. https://doi.org/10.1109/FMCAD.
2014.6987617

[30] Kai Weng Wong, Cameron Finucane, and Hadas Kress-Gazit. 2013. Provably-
correct robot control with LTLMoP, OMPL and ROS. In 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Tokyo, Japan, November 3-7,
2013. IEEE, 2073. https://doi.org/10.1109/IROS.2013.6696636

[31] TichakornWongpiromsarn, Ufuk Topcu, Necmiye Ozay, Huan Xu, and Richard M.
Murray. 2011. TuLiP: A Software Toolbox for Receding Horizon Temporal Logic
Planning. In Proceedings of the 14th International Conference on Hybrid Systems:
Computation and Control (HSCC ’11). ACM, New York, NY, USA, 313–314. https:
//doi.org/10.1145/1967701.1967747

22

