
Using PhysicalQuantities in Robot Software Models

Loli Burgueño
Universidad de Málaga, Atenea Research Group

Málaga, Spain

loli@lcc.uma.es

Tanja Mayerhofer
TU Wien, Business Informatics Group

Vienna, Austria

mayerhofer@big.tuwien.ac.at

Manuel Wimmer
TU Wien, CDL-MINT

Vienna, Austria

wimmer@big.tuwien.ac.at

Antonio Vallecillo
Universidad de Málaga, Atenea Research Group

Málaga, Spain

av@lcc.uma.es

ABSTRACT

One of the challenges of modeling any software application that

deals with real-world physical systems resides in the correct rep-

resentation of numerical values and their units. This paper shows

how both measurement uncertainty and units can be effectively

incorporated into software models, becoming part of their basic

type systems, and illustrates this approach in the particular case of

a robot language. We show how our approach allows robot mod-

elers to safely represent and manipulate units and measurement

uncertainties of the robots and their elements in a natural manner,

statically ensuring unit-safe assignments and operations, as well

as the propagation of uncertainty in the computations of derived

attributes and operations.

KEYWORDS

Model-driven engineering, quantities, units, measurement uncer-

tainty, cyber-physical systems, robotics

ACM Reference Format:

Loli Burgueño, Tanja Mayerhofer, Manuel Wimmer, and Antonio Valle-

cillo. 2018. Using Physical Quantities in Robot Software Models. In RoSE’18:

RoSE’18:IEEE/ACM 1st International Workshop on Robotics Software Engineer-

ing , May 28-June 28, 2018, Gothenburg, Sweden. ACM, New York, NY, USA,

6 pages. https://doi.org/10.1145/3196558.3196562

1 INTRODUCTION

As any other cyber-physical systems, robots are typically designed

and built as a network of interacting elements of different nature

(software, hardware, communications, sensors, actuators, etc.) with

physical input and output instead of as standalone devices, and

with complex interactions among their internal elements, and also

with their physical environment [15]. Model-Driven Engineering

(MDE) [4] is a state-of-the-art approach for the design, development

and maintenance of software applications, particularly well suited

to deal with complex systems because it relies on two basic and key

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RoSE’18, May 28-June 28, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5760-9/18/05. . . $15.00
https://doi.org/10.1145/3196558.3196562

concepts: abstraction and automation [24]. MDE has been success-

fully used in many domains for modeling complex systems [11, 23],

and software models have proved to be very useful for providing

high-level formal descriptions of complex systems that permit their

representation, specification, analysis and automated development.

When it comes to modeling robotic systems, and in order to

faithfully represent and manipulate the key properties of physical

world systems and their elements, software models need to be able

to deal with correct numerical values and their units. This includes

the representation of measurement uncertainty due to errors in

physical measures or the tolerance of mechanical tools and devices,

as well as the units in which these values are expressed. Ignoring

uncertainty makes models too naïve, assuming that all measures

are exact and that no deviation due to tolerance in the robot devices

(gears, wheels, etc.) occur. Thus, we may be building a model of a

system which does not provide a faithful representation for it.

Taking standard UML as a prominent example for a software

modeling language, there is neither support for modeling units

nor for modeling measurement uncertainty. Instead, mere Real

numbers are used to specify attribute values that represent physical

properties, explaining at most in the companion documentation

the units in which each attribute value should be expressed (cf.,

for instance, [7]). Uncertainty is normally ignored, or considered

somewhere else in the models.

Although some of the existing modeling languages, such as

MARTE [20] and SysML [21], already provide mechanisms for de-

scribing these properties, such mechanisms are not integrated into

their type systems and therefore they do not support operations

for propagating uncertainty or for statically checking possible unit

mismatches—which have already proved to be the cause of sig-

nificant software disasters, such as the Mars Climate Orbiter [12]

or the Gimli Glider Incident [16]. Furthermore, incorporating by

hand units and measurement uncertainty into the models is far

from trivial, and it can produce much more cumbersome models,

significantly increasing the accidental complexity of the solution.

In addition, both unit conversions and propagation of uncertainty

need to be explicitly handled by users.

The authors of this paper have been recently working on an ap-

proach to deal with measurement uncertainty and units in software

models [17, 18]. In particular, we have defined an extension of the

UML and OCL type Real to represent physical properties, called

Quantity, a set of operations for this new type, and type checks

that impede the unit-mismatch problem.

23

2018 ACM/IEEE 1st International Workshop on Robotics Software Engineering

RoSE’18, May 28-June 28, 2018, Gothenburg, Sweden L. Burgueño et al.

This paper presents a concrete case study of the use of our

approach in the case of a language for specifying robot movements.

It is based on the Ozoblockly language (http://ozoblockly.com)

for controlling Ozobot robots (https://ozobot.com). We show how

physical properties of such robots and their environment can be

effectively specified using the introduced Quantity type, how their

units can be safely combined and computed, and how measurement

uncertainties can be propagated when operating with them.We also

show how USE/OCL [8] can be employed for analyzing and quickly

prototyping modeled robot missions. Note that existing languages

that could be employed for this application case do not cover all

these features. For example, the robot family of languages defined

by Davide et al. [7] does not consider units and uncertainty, and

the Ozoblockly language does not take into account uncertainty.

The structure of this paper is as follows. After this introduction,

Section 2 briefly presents the concepts related to quantities, units

and measurement uncertainty. After that, Section 3 presents the

case study of the Ozoblockly language, while Section 4 describes

some of the analysis we are able to conduct on the models. Finally,

Section 5 compares our work to similar proposals, and we conclude

in Section 6 with an outlook on future work. All the models and

artefacts described in this paper are available from [19].

2 BACKGROUND

A Quantity is an observable property of an object, event or system

that can be measured and quantified numerically [10]; for example

its position, size, speed or temperature. By convention, physical

quantities are organized in a system of dimensions. Examples of these

dimensions are length, mass, time, force, energy, power and electric

charge. These are expressed in units. The Value of a quantity is its

magnitude expressed as the product of a number and a unit. The

number multiplying the unit is referred to as the numerical value

of the quantity expressed in that unit [25]; for example, 3.5m/s .

2.1 Units and Dimensions

The most widely used system of dimensions is the International Sys-

tem of Units (SI) [25]. It defines seven base dimensions: Length, Mass,

Time, Electric Current, Thermodynamic Temperature, Amount of

Substance, and Luminous Intensity; with its corresponding base

units: Meter (m), Kilogram (kд), Second (s), Ampere (A), Kelvin (K),
Mole (mol) and Candela (cd). The SI also defines 90 derived dimen-
sions (Area, Volume, Velocity, Force, etc.) and their corresponding

units (m2,m3,m/s , Newton, etc.).
The ISO/IEC 80000:2009 standard [1] extends the International

System of Units incorporating four new base dimensions (and their

corresponding base units): Data Storage Capacity (bit), Entropy

(shannon), Traffic Intensity (erlang) and Level (decibel). Derived units

are also defined, including byte for information storage, natural

unit of information (nat) and hartley for entropy, and neper for level

of sound. The standard includes all SI prefixes as well as the binary

prefixes kibi-, mebi-, gibi-, etc., originally introduced by the IEC

to standardize binary multiples of byte, to distinguish them from

their decimal counterparts, such as megabyte (MB). Binary prefixes

are not limited to units of information storage.

Apart from the SI, there are other systems of units which are

used in different countries. For example, the Centimeter-Gram-

Second System (CGS) is a variant of the metric system that has

the same dimensions but uses centimeters, grams and seconds as

base units. The Imperial System used in UK also defines the same

dimensions as the SI, but uses different units: miles, feet, inches,

stones, pounds, etc. In USA, the United States Customary System

(also called USCS or USC) is a variant of the Imperial System that

uses different units for fluids. Since they define the same dimensions,

conversions among these systems of units are possible by simply

multiplying the quantity values by the corresponding conversion

factors. In fact, any unit from any system can be expressed in terms

of SI units, and the conversion among them can be easily defined

using multiplication factors and, in some cases, offsets. For example,

to convert from Celsius to Kelvin the conversion factor is 1.0 and

the offset 273.15.

2.2 Measurement Uncertainty

When dealing with real-world entities, models need to take into

account the inability to know, estimate or measure with complete

precision the value of any quantity. This is for instance needed to

take into account the tolerance of a device when taking a measure-

ment, or to consider cases where estimations are needed because

the exact values are too costly to measure. This is why, in general, a

measurement result that determines the value of a quantity “is only

complete when it is accompanied by a statement of the associated

uncertainty” [13, 14].

The Guide to the Expression of Uncertainty in Measurement

(GUM) [13] defines the term standard uncertainty as “the uncer-

tainty of the result of a measurement expressed as a standard devi-

ation”.

Finally, quantities are rarely used in isolation, but combined to

produce aggregated measures or to calculate derived attributes. The

individual uncertainties of the input quantities need to be combined

too, to produce the uncertainty of the result. This is known as the

propagation of uncertainty, or uncertainty analysis [13].

2.3 Integration into UML and OCL

In [17] we defined an extension of the UML and OCL type Real,

called Quantity, that provides an algebra of operations for specify-

ing and performing computations with measurement uncertainty

and units in attributes representing properties of entities of the

physical world. We also provided a ready-to-use library of dimen-

sions (Length, Mass, etc.) implemented in UML, Java, OCL and

fUML, that can be added to any modeling project, and that permits

modelers to safely represent and manipulate units and measure-

ment uncertainties of physical systems in a natural and transparent

manner. These libraries are available from [19].

Figure 1 shows the basic elements of our proposal, whereby a

Quantity is composed of a value and a unit. The class Quantity is

then refined for each dimension specified in the ISO 80000 standard.

Thus, values of type Quantity are given by a Real number repre-

senting the measurement result; the unit in which it is expressed;

and the standard uncertainty associated to the measurement (i.e.,

the precision). For example, (1000.0, 0.0001,m) or (352.44, 0.0, f t)
are valid values of type Length.

24

Using Physical Quantities in Robot Software Models RoSE’18, May 28-June 28, 2018, Gothenburg, Sweden

Each type has a set of associated operations, which define the

valid operations on its values. These operations permit the imple-

mentation of static type checking mechanisms when assigning

values to variables, or when defining expressions that compute the

values of derived attributes. For example, the class Length offers

an operation for multiplying a Length by another Length, giving

an Area as result. Only valid operations are defined in every class,

hence ensuring static type checking.

One important feature of these operations is that they take into

account the units in which the operands are expressed, and convert

them accordingly in order to avoid any unit-mismatch error. In this

way, users do not need to worry about these issues: the type system

takes care of them transparently.

In turn, the class UReal provides operations to operate with

uncertain values, supporting the propagation of uncertainty in a

natural and transparent manner. Also operations for comparing

values with uncertainty are provided. These comparisons can return

either a boolean (a < b), or they may also return a number between
0 and 1, indicating the probability of an uncertain number a being
less (or equal) than another uncertain number b [17].

3 CASE STUDY: OZOBLOCKLY LANGUAGE

This section describes a case study of a system that requires the

representation of both units and measurement uncertainty.

The studied system is an Ozobot robot (https://ozobot.com) that

is able to move in the direction its head points to. These kinds of

robots accept two type of commands: one to rotate its head at

a certain angle, and another one to move forward some distance.

Both commands can be combined, executing first the rotation and

then the movement. A robot’s Plan is composed of a sequence of

movements. We can also assign a Mission to a given robot. The

mission determines the target position it is supposed to reach with

the plan. Positions are given by coordinates in a planar surface

(i.e, they are points in a plane that represents the floor).

In this case study we are interested in analyzing a robot’s behav-

ior, and, in particular, whether the sequence of movements defined

in its plan fulfills the mission, i.e., reaches the target position.

Figure 2 shows the representation of the system using UML.

The class Robot offers the operation performAllMoves() that goes

through all the movements in its plan, and performs them in se-

quence. Every movement calculates the target coordinate after the

move, and requests the robot to advance to that position.

In order to check whether the robot has reached the final target

position, the class Coordinate provides the operation coincide()

that determines whether two coordinates are equal.

Suppose a scenario where a set of collaborating teams that are

geographically distributed is controlling a robot. Each team defines

some of the robot movements in order to reach the target. Suppose

that each team is in a different country and uses a different system

of units. For instance, one of them is in the UK and uses Imperial

units while the other is in France and uses the SI. These issues will

cause disasters.

Figure 3 shows how we can model the Ozobot robot system in

UML, using our reusable library of Quantities.We can see how every

attribute is typed with the dimension of the property it represents.

In this example only two dimensions are used, Length and Angle.

These are types in the sense that they define a set of values and

a set of valid operations on them. Note that we have also defined

some derived attributes in the classes Robot and Coordinate (e.g.

/xyh, /xy and /u). These are not really needed for computational

purposes, but they are rather useful for being able to visualize the

values of the objects’ attributes as we shall later see in Section 4.

Operations and derived values are specified in our approach in

the usual manner. For example, the operation coincide() of class

Coordinate can be specified as follows:

context Coordinate : : coincide (c : Coordinate) : Boolean =

self . x . equals (c . x) and self . y . equals (c . y)

Here the type system takes care of dealing with units of the

values (internally performing the unit conversions, when required),

and with the propagation of their measurement uncertainties.

Another operation that we have also included in this latter

model is the method uCoincide() of the class Coordinate. Com-

parison operations for Real numbers return Boolean values. How-

ever, when comparing numbers with uncertainty there is always a

degree of uncertainty in the comparison too, and this is why the

result of a comparison may be given by a number between 0 and

1, indicating the probability with which two uncertain values are

equal. Assuming the coordinates are independent, this probabilistic

comparison is implemented by the method uCoincide(), which

can be simply specified in OCL as follows, making use of the fuzzy

comparison operators for UReal values:

context Coordinate : : uCoincide (c : Coordinate) : Real =

self . x . uEquals (c . x) ∗ self . y . uEquals (c . y)

4 ANALYSIS

In this section we will discuss some of the possible analyses we can

conduct on the presented UML models for Ozobot robots, namely

simulation and verification. The advantage of these kinds of analy-

ses is that they can be performed on high-level UML models of the

system, well before the system is developed and deployed. Without

claiming to be exhaustive, they are regarded as being useful for the

early detection of structural problems or system-wide errors [27].

4.1 Simulation

SOIL [6] is a language supported by USE [8] to specify the behavior

of OCL operations, and to execute models by means of creating

object instances and invoking their operations.

For example, the operation performMove() of the class Movement

can be enriched with executable behavior as follows:

class Movement

attributes

move : Length

rotate : Angle

operations

performMove ()

begin

declare aux : Coordinate , sa : UReal , ca : UReal , dx : Length , dy : Length ;

-- we change the angle first (if we have to)

i f not self . rotate . oclIsUndefined () then

self . robot . headsTo : = self . rotate

end ;

-- and then we move (if we have to)

i f not self . move . oclIsUndefined () then

ca : = self . robot . headsTo . cos () ;

sa : = self . robot . headsTo . sin () ;

dx : = self . move . sMult (ca) ;

25

RoSE’18, May 28-June 28, 2018, Gothenburg, Sweden L. Burgueño et al.

...

+symbol() : String

+Unit(name : String, symbol : String, d : double [12], c : double [12], o : double [12])

+equals(u : Unit) : boolean

+multiplyUnits(u : Unit) : Unit

+powerUnits(s : float) : Unit

+isCompatibleWith(u : Unit) : boolean

+isCoherentDerivedUnit() : Boolean

+isBaseUnit() : boolean

+Unit(symbol : String)
+Unit(d : DerivedUnits)

+isDerivedUnit() : boolean

+isDimensionlessUnit() : boolean

+name() : String

+divideUnits(u : Unit) : Unit

+Unit(d : BaseUnits, exp : double)

+name : String
+symbol : String

+offset : double [12]
+conversionFactor : double [12]
+dimensions : double [12]

Unit

...

+gt(r : UReal) : boolean

+min(r : UReal) : UReal

+compareTo(other : UReal) : int

+uGt(r : UReal) : double

+neg() : UReal

+uLt(r : UReal) : double

+UReal(x : double)

+uDistinct(r : UReal) : double

+lt(r : UReal) : boolean

+uLe(r : UReal) : double

+floor() : UReal

+distinct(r : UReal) : boolean

+max(r : UReal) : UReal

+power(s : float) : UReal
+sqrt() : UReal

+abs() : UReal

+inverse() : UReal

+minus(r : UReal) : UReal

+ge(r : UReal) : boolean

+le(r : UReal) : boolean

+add(r : UReal) : UReal

+round() : UReal
+equals(r : UReal) : boolean

+divideBy(r : UReal) : UReal
+mult(r : UReal) : UReal

+uEquals(r : UReal) : double

+uGe(r : UReal) : double

+UReal(x : double, u : double)

+u : double =
+x : double =

UReal

...

+toString() : String

+Quantity(x : double, u : double, unit : Unit)

+Quantity(x : double)

+le(r : Quantity) : boolean

+distinct(r : Quantity) : boolean

+compatibleUnits(u : Unit) : boolean

+toInteger() : int

+inverse() : Quantity

+add(r : Quantity) : Quantity

+max(r : Quantity) : Quantity

+lt(r : Quantity) : boolean

+divideBy(r : Quantity) : Quantity

+round() : Quantity

+Quantity(u : UReal, unit : Unit)

+divideBy(s : float) : Quantity

+Quantity(x : double, u : double)

+equals(r : Quantity) : boolean

+sqrt() : Quantity

+floor() : Quantity

+power(s : float) : Quantity

+gt(r : Quantity) : boolean

+mult(r : Quantity) : Quantity

+min(r : Quantity) : Quantity

+minus(r : Quantity) : Quantity

+neg() : Quantity

+convertTo(u : Unit) : Quantity

+ge(r : Quantity) : boolean

+mult(x : float) : Quantity
+toReal() : double

+abs() : Quantity

Quantity

ThermodynamicTemperature

GravitationalAttraction

AmountOfSubstance

AngularAcceleration

LuminosityIntensity

LinearAcceleration

ElectricCurrent

LinearVelocity Resistance...............

Length

Power

Angle

Force

Mass Time

Derived Dimensions

Base Dimensions

+value
+unit

Figure 1: Representation of quantities with their values and units.

Figure 2: Initial Class diagram for the Moving Robot example, using plain UML.

Figure 3: Class diagram for the Moving Robot example, with Quantities.

dy : = self . move . sMult (sa) ;

aux : = new Coordinate ;

aux . x : = self . robot . position . x . add (dx) ;

aux . y : = self . robot . position . y . add (dy) ;

self . robot . position : = aux ;

end ;

end

end

Since all operations on attributes are performed using the en-

riched type system, they transparently take into account units and

uncertainty. Similarly, the specification of the class Movement can

be enriched with behavior as shown below.

class Robot

attributes

position : Coordinate

headsTo : Angle

operations

performAllMoves ()

begin

for m in self . moves do

m . performMove ()

end

end

end

Once the behavior of objects is specifiedwith SOIL, the USE/OCL

environment supports commands for creating objects and invoking

operations on them.

26

Using Physical Quantities in Robot Software Models RoSE’18, May 28-June 28, 2018, Gothenburg, Sweden

Let us define the following list of movements we want the robot

to perform. These movements request the robot to: move 10 me-

ters in its pointing direction (initially 0); then rotate π/2 radians;
advance 10m; rotate 225 degrees and advance 10

√
2 ft; and finally

rotate π/4 rad and move forward another 10√2 ft. Starting from
coordinate (0,0), this plan should lead it to its target position, (10,10).

The precision of all measurements is supposed to be 1E-3 m.

The following listing shows an excerpt of a sequence of com-

mands that we have issued to simulate this scenario. Lines 1–9

create UReal numbers, specifying their values and associated un-

certainty. Then, lines 11–19 define some values of quantities of

types Length and Angle. Note that some values are expressed in

meters (line 13), others in feet (line 16).

1 Robot . soil> ! new UReal ('x10U')

2 Robot . soil> ! x10U . x : = 1 0 . 0

3 Robot . soil> ! x10U . u : = 0 . 0 0 1

4 Robot . soil> ! new UReal ('xy1010U ')

5 Robot . soil> ! xy1010U . x : = 1 . 4 1 4 2 1 3 5 6 ∗ 1 0 . 0

6 Robot . soil> ! xy1010U . u : = 0 . 0 0 1

7 Robot . soil> ! new UReal ('h90U')

8 Robot . soil> ! h90U . x : = 1 . 5 7 0 7 9 6 3 2 6 7 9 4 8 9 6 5

9 Robot . soil> ! h90U . u : = 0 . 0 0 1

10 Robot . soil> . . .

11 Robot . soil> ! new Length ('x10')

12 Robot . soil> ! x10 . value : = x10U

13 Robot . soil> ! x10 . unit : = m

14 Robot . soil> ! new Length ('xy1010 ')

15 Robot . soil> ! xy1010 . value : = xy1010U

16 Robot . soil> ! xy1010 . unit : = ft

17 Robot . soil> ! new Angle ('h90')

18 Robot . soil> ! h90 . value : = h90U

19 Robot . soil> ! h90 . unit : = rad

20 Robot . soil> . . .

21 Robot . soil> ! new Coordinate ('initial ')

22 Robot . soil> ! initial . x : = x00

23 Robot . soil> ! initial . y : = y00

24 Robot . soil> ! new Coordinate ('target ')

25 Robot . soil> ! target . x : = x10

26 Robot . soil> ! target . y : = y10

27 Robot . soil> ! new Robot ('robot ')

28 Robot . soil> ! robot . position : = initial

29 Robot . soil> ! robot . headsTo : = h0

30 Robot . soil> ! new Movement ('m1')

31 Robot . soil> ! m1 . move : = x10

32 Robot . soil> ! new Movement ('m2')

33 Robot . soil> ! m2 . rotate : = h90

34 Robot . soil> ! new Movement ('m3')

35 Robot . soil> ! m3 . move : = x10

36 Robot . soil> ! new Movement ('m4')

37 Robot . soil> ! m4 . rotate : = h225

38 Robot . soil> ! m4 . move : = xy1010

39 Robot . soil> ! new Movement ('m5')

40 Robot . soil> ! m5 . rotate : = h45

41 Robot . soil> ! m5 . move : = xy1010

42 Robot . soil> ! insert (robot , m1) into Plan

43 Robot . soil> ! insert (robot , m2) into Plan

44 Robot . soil> ! insert (robot , m3) into Plan

45 Robot . soil> ! insert (robot , m4) into Plan

46 Robot . soil> ! insert (robot , m5) into Plan

47 Robot . soil> ! robot . performAllMoves ()

48 Robot . soil> ! r : = robot . position . uCoincide (target)

49 Robot . soil> ?r

50 −> 0 . 0 3 4 7 9 6 2 6 6 6 1 9 3 1 8 0 6 : Real

Lines 21–41 create instances of objects of types Coordinate,

Robot and Movement, and assign values to their attributes. In turn,

lines 42–46 create the instances (i.e., links) of the association Plan

corresponding to the movements we want the robot to perform.

Line 47 asks the robot to perform all these movements. Once

this is done, the resulting object model can be visualized with an

object diagram in USE, as shown in Figure 4. We can easily see

the resulting position of the robot and the values of its properties

thanks to its derived attributes /xyh, /xy and /u.

Line 48 asks whether the robot position coincides with its tar-

get. Although both values are centered at (10,10), the robot’s final

position after the sequence of movements is off by one centimeter

(1.0985E-2 m). However, the precision we are requesting for the

target position is 1 millimeter. This is why the calculated probabil-

ity of coincidence is just 3.4% (line 50). In other words, there is a

high (96.6%) risk that the robot misses the target, at least with the

required precision. Should we want to improve that situation, we

could either request more precision to the robot’s movements, or

relax the requested uncertainty of the mission’s target position to

centimeters.

4.2 Adding Model Invariants

We can also specify some system invariants to be checked during

the execution. For example, we could ask for the accumulated un-

certainty of the robot’s current position, making sure it does not

go above a given threshold (e.g. 1E-2 m).

context Robot inv PrecisionUnderControl :

self . position . x . u < 0 . 0 1 and self . position . y . u < 0 . 0 1

Furthermore, the behavior of operations is normally specified

by determining their pre- and post-conditions. They can be used

to check, for example, whether after given movements towards a

coordinate we have deviated too much from it. In this way, we will

be able to detect, during the execution of the system, any significant

deviation of the robot. Let us assume as well an extended scenario

where we consider obstacles that the robot cannot go through.

A precondition for the operation performMove() can also check

that the target coordinate is a reachable point, i.e. there are not

obstacles preventing the robot from reaching its expected target

position when moving forward.

5 RELATEDWORK

This work uses the ideas presented in [9], incorporating not only

uncertainty but also units, following [17, 18]. Our paper is closely

related to those works that focus on the specification of robotic

systems, specially those that deal with their behavior. Here the

discussion happens between those that propose the use of sepa-

rate views of the system, using independent domain-specific lan-

guages, and those that try to use general purpose modeling lan-

guages. One of the major problems with the former approach is

the combination of the languages, both at the same level of ab-

straction (i.e., horizontally—see, e.g. [26]) and at different level

of abstraction (i.e. vertically—one example of this kind of ver-

tical combination for robotic systems is [3]). Among the latter,

the most widely known ones use high-level component-based ar-

chitectures with the functional decomposition of the robotic sys-

tems, using block-diagrams and/or UML components. Examples in-

clude SafeRobots [22], RobotML (http://robotml.github.io/), Smart-

Soft (http://smart-robotics.sourceforge.net/), V3CMM [2], BCM

(http://www.best-of-robotics.org/bride/bcm.html), andHyperFlex [5].

Our approach is defined at a higher level of abstraction, even before

the architecture of the system needs to be considered—just its ba-

sic functionality—and hence many of the details can be abstracted

27

RoSE’18, May 28-June 28, 2018, Gothenburg, Sweden L. Burgueño et al.

Figure 4: Object diagram for the Moving Robot example, after execution.

away. More importantly, none of these approaches permit dealing

with units and measurement uncertainty in the models.

6 CONCLUSIONS AND FUTUREWORK

This paper presents, by means of the example of a robot language,

how units of measurement and measurement uncertainty can be

integrated into software models. Following our approach, dimen-

sions (such as Length and Angle) can be considered primitive data

types, whose values incorporate units and uncertainty. Dimensions

also integrate the required mechanisms to deal with unit-safe as-

signments, unit conversions, and the propagation of uncertainty.

We have also presented how our robot models are simulated and

how to perform some analysis on them.

Our current plans for future work include extending other robot

languages with Quantities, such as the ones defined in [7], and

also conducting further experiments with real robots in order to

validate the precision and accuracy of our estimations with respect

to the robots actual behavior. We also plan to extend our approach

to represent the precision of a value as a function.

REFERENCES
[1] ISO/IEC 80000:2009. 2011. Quantities and Units. https://www.iso.org/standard/

30669.html
[2] D. Alonso, C. Vicente-Chicote, F. Ortiz, J. Pastor, and B. Alvarez. 2010. V3CMM: A

3-view component meta-model for model-driven robotic software development.
Journal of Software Engineering for Robotics 1, 1 (2010), 3–17.

[3] Colin Atkinson, Ralph Gerbig, Katharina Markert, Mariia Zrianina, Alexander
Egurnov, and Fabian Kajzar. 2014. Towards a Deep, Domain Specific Modeling
Framework for Robot Applications. In Proc. of MORSE’14) (CEUR WS Proceedings).
1–12. http://ceur-ws.org/Vol-1319/#morse14_paper_01

[4] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-Driven Software
Engineering in Practice (2 ed.). Morgan & Claypool Publishers.

[5] Davide Brugali and Luca Gherardi. 2016. HyperFlex: A Model Driven Toolchain
for Designing and Configuring Software Control Systems for Autonomous Robots.
In Robot Operating System (ROS): The Complete Reference, Vol. 1. 509–534.

[6] Fabian Büttner and Martin Gogolla. 2014. On OCL-based imperative languages.
Sci. Comput. Program. 92 (2014), 162–178.

[7] Federico Ciccozzi, Davide Di Ruscio, Ivano Malavolta, and Patrizio Pelliccione.
2016. Adopting MDE for Specifying and Executing Civilian Missions of Mobile
Multi-Robot Systems. IEEE Access 4 (2016), 6451–6466. https://doi.org/10.1109/
ACCESS.2016.2613642

[8] Martin Gogolla, Fabian Büttner, and Mark Richters. 2007. USE: A UML-Based
Specification Environment for Validating UML and OCL. Sci. Comput. Program.
69 (2007), 27–34.

[9] Martin Gogolla and Antonio Vallecillo. 2017. (An Example for) Formally Modeling
Robot Behavior with UML and OCL. In Proc. of the MORSE Workshop at STAF’17

(LNCS). Springer, 1–15.
[10] Ralph Hodgson, Paul J. Keller, Jack Hodges, and Jack Spivak. 2014. QUDT –

Quantities, Units, Dimensions and Data Types Ontologies. TopQuadrant, Inc. and
NASA AMES Research Center. http://qudt.org/.

[11] John Edward Hutchinson, JonWhittle, andMark Rouncefield. 2014. Model-driven
engineering practices in industry: Social, organizational and managerial factors
that lead to success or failure. Sci. Comput. Program. 89 (2014), 144–161.

[12] D. Isbell and D. Savage. 1999. Mars Climate Orbiter Failure Board Releases Report,
Numerous NASA Actions Underway in Response. NASA Press Release 99-134. http:
//nssdc.gsfc.nasa.gov/planetary/text/mco_pr_19991110.txt

[13] JCGM 100:2008. 2008. Evaluation of measurement data – Guide to the expression
of uncertainty in measurement (GUM). Joint Committee for Guides in Metrology.
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf.

[14] JCGM101:2008. 2008. Evaluation of measurement data – Supplement 1 to the “Guide
to the expression of uncertainty in measurement" – Propagation of distributions
using a Monte Carlo method. Joint Committee for Guides in Metrology. http:
//www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf.

[15] Edward A. Lee. 2008. Cyber Physical Systems: Design Challenges. In Proc. of
ISORC’08. IEEE, 363–369.

[16] George H. Lockwood. 1985. Final report of the Board of Inquiry investigating the
circumstances of an accident involving the Air Canada Boeing 767 aircraft C-GAUN
that effected an emergency landing at Gimli, Manitoba on the 23rd day of July,
1983. Government of Canada [Ottawa]. vi, 199 p. ; pages.

[17] Tanja Mayerhofer, Manuel Wimmer, Loli Burgueño, and Antonio Vallecillo. 2018.
Specifying Quantities in Software Models. Submitted (2018). Technical re-
port available from http://atenea.lcc.uma.es/index.php/Main_Page/Resources/
DataUncertainty.

[18] Tanja Mayerhofer, Manuel Wimmer, and Antonio Vallecillo. 2016. Adding Un-
certainty and Units to Quantity Types in Software Models. In Proc. of the 2016
ACM SIGPLAN International Conference on Software Language Engineering (SLE
2016). ACM, 118–131.

[19] Tanja Mayerhofer, Manuel Wimmer, and Antonio Vallecillo. 2016. Computing
with Quantities: the Java Project. https://github.com/moliz/moliz.quantitytypes

[20] Object Management Group. 2011. UML Profile for MARTE: Modeling and Analysis
of Real-Time Embedded Systems. Version 1.1. OMG Document formal/2011-06-02.

[21] Object Management Group. 2016. OMG Systems Modeling Language (SysML),
version 1.4. OMG Document formal/2016-01-05.

[22] Arunkumar Ramaswamy, Bruno Monsuez, and Adriana Tapus. 2014. Model-
driven software development approaches in robotics research. In Proc. of MISE’14.
ACM, 43–48.

[23] Davide Di Ruscio, Richard F. Paige, and Alfonso Pierantonio. 2014. Guest editorial
to the special issue on Success Stories in Model Driven Engineering. Sci. Comput.
Program. 89 (2014), 69–70.

[24] Douglas C. Schmidt. 2006. Guest Editor’s Introduction: Model-Driven Engineer-
ing. IEEE Computer 39, 2 (2006), 25–31. https://doi.org/10.1109/MC.2006.58

[25] Barry N. Taylor and Ambler Thompson. 2008. The International System of Units
(SI). NIST. http://www.nist.gov/pml/pubs/sp811/.

[26] Antonio Vallecillo. 2010. On the Combination of Domain Specific Modeling
Languages. In Proc. of ECMFA’10 (LNCS), Vol. 6138. Springer, 305–320.

[27] Pamela Zave. 2010. Lightweight modeling of network protocols: The case of Chord.
Technical Report. AT&T LaboratoriesâĂŤResearch.

28

