
Industrial-Scale Environments With Bounded Uncertainty:
A Productivity Maximisation Challenge

Daniel Sykes
Ocado Technology

daniel.sykes@ocado.com

Gavin Keighren
Ocado Technology

gavin.keighren@ocado.com

ABSTRACT

We present an outline of the operating domain for control software

in Ocado warehouses, and provide results which suggest that in

this well-understood and highly controlled environment, there

are limits to the uncertainty which planning and control systems

need to consider. More specifically, that planning approaches can

be biased towards rapid recovery when something goes wrong,

rather than trying to deal with all possible eventualities up-front.

Since academic interest has generally focused on complex and

highly fault-tolerant up-front planning, we believe this domain and

planning approach is fertile ground for further investigation.

CCS CONCEPTS

• Software and its engineering → Software fault tolerance;

Real-time systems software; • Applied computing→ Online shop-

ping;

KEYWORDS

Planning, Bounded Uncertainty, Redundancy, Resilience

ACM Reference Format:

Daniel Sykes and Gavin Keighren. 2018. Industrial-Scale Environments

With Bounded Uncertainty: A Productivity Maximisation Challenge. In

RoSE’18: RoSE’18:IEEE/ACM 1st International Workshop on Robotics Software

Engineering , May 28-June 28 2018, Gothenburg, Sweden. ACM, New York,

NY, USA, 4 pages. https://doi.org/10.1145/3196558.3196563

1 INTRODUCTION

Autonomous, self-adaptive, and robotic systems are deployed in

many environments which exhibit unavoidable unpredictability of

events and outcomes. Consequently, much research effort has been

expended on approaches that tolerate and adapt to uncertainty

[5, 9]. However, the associated uncertainty differs by environment

and therefore the ideal planning and control strategies will differ.

Environments that are largely unexplored, where the cost of failure

is very high (such as the surface of Mars), demand elaborate, open-

ended and highly fault-tolerant planning and machine learning

that come at significant computational and financial cost [2, 3].

In contrast, environments that are well understood and highly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RoSE’18, May 28-June 28 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5760-9/18/05. . . $15.00
https://doi.org/10.1145/3196558.3196563

controlled (such as a logistics warehouse) allow for approaches

which can operate at scale while still being cost-effective [11].

Ocado operates a number of automated warehouses in which

robots, conveyors and lifts operate 24/7 to fulfil grocery orders,

subject to hard shipping deadlines, product shelf-life requirements,

and storage and handling constraints [8, 15]. These warehouses

(also known as Customer Fulfilment Centres — CFCs) constitute a

controlled artificial environment in which sources of uncertainty

are generally bounded and limited to a set of known unknowns

(in the Rumsfeld ontology [17]). We therefore focus our effort on

minimising the impact of these known failures, rather than under-

taking complex deliberative processes that attempt to deal with

every possible eventuality.

One of the ways the impact of uncertainty is minimised in the

automated warehouse is by making the hardware components inter-

changeable (i.e., redundant). The components present in an Ocado

warehouse include mobile robots, conveyors, shuttles,1 and lifts

(which we collectively term actuators hereafter). Redundancy is

used to ensure there is no single point of failure. Each warehouse is

divided into three temperature regimes—ambient, chill and freezer—

according to the kind of stock stored there.

The sources of uncertainty in the warehouse include (but are

not limited to):

• failures due to mechanical wear and tear,

• performance variations due to manufacturing inconsisten-

cies,

• performance variations due to operational capabilities of the

hardware,

• variation in the performance of human operators,

• variation in radio communication performance,

• failures due to hardware manufacturing defects,

• failures due to dirt and contamination, and

• human errors.

To account for slight performance differences between individual

instances of a specific type of actuator, suitable bounds can be

specified for these variations. This performance envelope allows the

control system to more easily account for and tolerate individual

performance deviations. The failure of an individual actuator is

usually tolerable as the work can be allocated to another of the same

type. The challenge is to ensure the fault is adequately quarantined

and the work is reallocated as quickly as possible and without

human intervention.

Allocation of work is done by the warehouse control systems,

which select strategies and decide upon the sequence of actions to be

performed. Since the control systems exploit bounded uncertainty

in assuming reliable hardware operating within a performance

1https://www.tgw-group.com/en/Products/Storage-Solution/Shuttle-
Systems/Shuttle-Systems

29

2018 ACM/IEEE 1st International Workshop on Robotics Software Engineering

RoSE’18, May 28-June 28 2018, Gothenburg, Sweden Daniel Sykes and Gavin Keighren

envelope, any failure invalidates at least one local task, and, in

the worst case, every task. The control systems must then take

remedial action to quarantine or correct the fault and reallocate

work to ensure minimal loss of throughput (which can be measured

as the rate of completing customer orders).

In the remainder of the paper, Section 2 outlines our general

approach in dealing with bounded uncertainty, Section 3 presents

some results of the approach from a live Ocado warehouse, and

Sections 4 and 5 relate our approach to other work in the field and

give our view on what challenges remain.

2 APPROACH

The primary actions available to the warehouse control system are

those related to movement of storage containers in the X, Y, or Z

direction. For example, a conveyor may move containers in the X

direction, while a mobile robot or a lift may move containers in

multiple axes. The sensors available to each hardware component

may indicate a fault or reduced performance, either during an action

or before an action is scheduled to be performed.

Sequences of actions are selected to allocate work to particular

actuators, and coordinate their movement (for instance, to avoid

collisions). Action sequences are composed into local plans for each

actuator, and (notionally) a global plan for the warehouse as a whole.

The large number of actuators in the warehouse (which is in the

thousands) means that this plan generation task is computationally

challenging, even without considering the possibility of failures.

For example, if 500 storage containers are in motion at once, then at

least 500 concurrent actions must have been selected and scheduled

by the control system.

Among the wide range of approaches for planning, we have

therefore chosen to apply computationally efficient algorithms to

minimise this up-front cost, and defer most decisions pertaining

to failures until the failures actually occur. This is in contrast to

approaches such as [1, 4–6, 16], which variously attempt to pre-

calculate strategies for failure handling in more or less exhaustive

ways. Those approaches increase the cost of generating the ini-

tial plan (and any subsequent plans that have to be generated as

a result of unknown unknowns) in the hope of never needing to

regenerate a plan. In the warehouse, we can exploit the large-scale

redundancy of components to localise the impact of failures, and

perform local recalculations instead of global ones. Furthermore,

the use of performance envelopes ensures that actual failure cases

are sufficiently infrequent.

Figure 1: Black circles show actuators capable of moving in

X or Y. Arrows indicate planned actions.

Let us consider the case of a storage container being moved from

an (x ,y) storage location at (1, 1) to (9, 1) as in Figure 1. Suppose

there is a constraint in the physical environment that means two

actuators must be co-ordinated to complete this movement. The

control systemmay generate a partially ordered sequence of actions

such as

1 (move, _, actuator1, (_, _), (1, 1))
2 (move, container1, actuator1, (1, 1), (5, 1))
3 (move, _, actuator2, (_, _), (5, 1))
4 (move, container1, actuator2, (5, 1), (9, 1))

In other words, actuator1 must move into position (1, 1), where

it will collect container1; actuator1 must move (in the X direction)

from (1, 1) to (5, 1); actuator2 must move into position (5, 1), where

container1 will be handed over from actuator1; and actuator2 must

move from (5, 1) to (9, 1). Note that although the actions are pre-

sented in a total order, step 3 is free to happen earlier or in parallel

with steps 1 and 2.

The two actuators may invalidate this plan in various known

ways. For example, actuator1 may perform slower than expected

and miss its synchronisation point with actuator2. Alternatively,

actuator2 may experience a hardware fault on its way to synchro-

nise with actuator1. If either of these situations actually occurs,

there is little reason for it to have immediate impact on the work

of actuator3 and actuator4 (which may be handing over a different

container), or the thousands of other actuators operating simulta-

neously. This locality of failure is the key characteristic of Ocado’s

problem domain that makes our approach advantageous.

Once the control system is apprised of the situation, the local

plan is invalidated and remedial actions are applied. The steps to

recovery are as follows:

(1) Plan invalidation - detecting which tasks are no longer

valid.

(2) Fault quarantine - e.g., disabling faulty hardware as nec-

essary and ensuring no other actuators attempt to interact

with it.

(3) Fault escalation - e.g., alerting hardware engineers or op-

erations personnel.

(4) Performance book-keeping - e.g., altering preference func-

tions.

(5) Plan recalculation - including physical remedial steps such

as “undoing” previous actions, correcting mistakes arising

from the fault, and actions that resolve any ambiguity in the

physical state of the system (e.g., scanning the barcode on a

container to check its identity).

In the case of slow performance of actuator1 (which is outside the

expected performance envelope), it may be the case that no specific

remedial action (other than recalculating a plan) is necessary. If the

actuator is frequently performing poorly, the control system may

decide to escalate the issue to an engineer and prefer not to allocate

work to the actuator in the meantime. The recalculated plan may

continue to use actuator2, although the time of synchronisation

between the actuators will be different. There may be a knock-on

effect on any future work involving either actuator, which must

be recalculated. For example, if actuator2 was meant to hand over

the container to actuator4, the plan for actuator4 will need to be

recalculated.

30

Industrial-Scale Environments With Bounded Uncertainty:

A Productivity Maximisation Challenge
RoSE’18, May 28-June 28 2018, Gothenburg, Sweden

In the case of a hardware fault on actuator2, the remedial action

will depend on the type of problem and history of the actuator. As

with performance issues, if the actuator is frequently exhibiting

the fault, the control system may escalate the issue to an engineer.

In any case, the fault is immediately quarantined and the rest of

the warehouse continues operating. Since actuator2 can no longer

be used for this work, a different actuator (e.g. actuator4) must be

selected to take over steps 3 and 4 of the task.

Human errors (such as a container being moved unexpectedly)

are, generally speaking, detected indirectly through the sensing

capabilities of each hardware component. Since the control system

must tolerate sensor values changing unexpectedly (due to hard-

ware faults), the recovery process is often identical, even when the

resulting system state is ambiguous. For example, the physical state

of the system can be determined by scanning the barcodes on the

affected containers.

3 RESULTS

To demonstrate the utility of our approach, we provide empirical re-

sults from a live Ocado warehouse showing the impact of situations

that invalidate the global plan in comparison to situations with local

impact. Figure 2 shows how one measure of system productivity —

the number of in-progress tasks — is affected when the global plan

is invalidated. The downtime duration is dependent on how long

it takes for the actuators to be returned to a state in which they

can be allocated work (steps 1-4 of the recovery process described

above) or in which they can safely be left unused — a process which

may require manual intervention (step 3 of the recovery process).

In this particular case, the downtime is less than 1 minute and the

ramp-up period following the downtime takes approximately 10-15

seconds.

Figure 2: Impact of clearing the global plan

Figure 3, in contrast, shows the impact of a local fault, with

respect to the same measure of system productivity as used in

Figure 2. At point B on the graph, 11 tasks were invalidated, while

at point A, 18 tasks naturally completed within approximately

100ms of each other. Given that the subsequent recovery of system

productivity is very similar in both cases (taking 1s or less), this

shows that the impact of local plan invalidation is indistinguishable

from the natural variation in work coming into the system.

Figure 4 shows how often some number of tasks are invalidated

as a result of local plans being recalculated, with over 95% of cases

Figure 3: Impact of clearing local plans

invalidating fewer than 5 tasks.2 This is orders of magnitude fewer

tasks compared to when the global plan has to be recalculated.

Figure 4: Frequency of task invalidation counts due to the

clearing of local plans

4 RELATED WORK

Our approach is aligned with both the MAPE-K reference model

[12, 13] and the conceptual architecture of the three-layer model

of Kramer and Magee [10, 14]. The latter provides a hierarchical

distinction between functionality such that real-time concerns are

dealt with as close to the hardware as possible, while slower delib-

erative tasks take place in the higher layers. In contrast, MAPE-K

explicitly separates the stages of monitoring, analysing, planning

and executing. In the warehouse, monitoring of performance and

failures provides input for plan recalculation and eventual execu-

tion by the actuators. We have focused on making the recalculation

efficient so that loss of productivity is minimised.

As indicated above, our approach runs somewhat counter to the

many and varied approaches that attempt to deal with uncertainty

up-front [1, 4–6, 16, 18]. Our experience, with a highly redundant

industrial-scale system (with high availability requirements), has

been that it is better to amortise the cost of the bounded uncertainty

present in the warehouses over the long run. FUSION is a notable

example of another approach that attempts to reduce these up-front

costs [7].

2The Y axis values are somewhat arbitrary as they depend on the time period covered
by the data.

31

RoSE’18, May 28-June 28 2018, Gothenburg, Sweden Daniel Sykes and Gavin Keighren

5 CONCLUSIONS

In this paper we have outlined our pragmatic approach to dealing

with bounded uncertainty in a highly redundant industrial-scale

system. We have described how we exploit the bounded impact of

actuator failures and performance variations by performing local

plan invalidation, which lowers the time taken to recover from a

failure, thus minimising its impact on overall productivity. This is

supported by empirical results from a live Ocado warehouse, where

local recalculation is indistinguishable from variations in work the

system is asked to do.

We believe this insight could be a fruitful basis for future research

into the different categories of uncertainty and the approaches that

are best suited to each of them.

ACKNOWLEDGEMENTS

Our thanks go to many of our colleagues at Ocado Technology

who helped to improve this paper, and who work tirelessly on the

systems we have mentioned.

REFERENCES
[1] Ronen I Brafman and Guy Shani. 2012. Replanning in domains with partial

information and sensing actions. Journal of Artificial Intelligence Research 45
(2012), 565–600.

[2] Joseph Carsten, Arturo Rankin, Dave Ferguson, and Anthony Stentz. 2007. Global
path planning on board the mars exploration rovers. In Aerospace Conference,
2007 IEEE. IEEE, 1–11.

[3] Amedeo Cesta, Gabriella Cortellessa, Michel Denis, Alessandro Donati, Simone
Fratini, Angelo Oddi, Nicola Policella, Erhard Rabenau, and Jonathan Schulster.
2007. Mexar2: AI solves mission planner problems. IEEE Intelligent Systems 22, 4
(2007).

[4] Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso. 2003.
Weak, strong, and strong cyclic planning via symbolic model checking. Artificial
Intelligence 147, 1-2 (2003), 35–84.

[5] Nicolas D’Ippolito, Víctor Braberman, Jeff Kramer, Jeff Magee, Daniel Sykes, and
Sebastian Uchitel. 2014. Hope for the best, prepare for the worst: multi-tier
control for adaptive systems. In Proceedings of the 36th International Conference
on Software Engineering. ACM, 688–699.

[6] Nicolás D’Ippolito, Victor Braberman, Nir Piterman, and Sebastián Uchitel. 2011.
Synthesis of live behaviour models for fallible domains. In Proceedings of the 33rd
International Conference on Software Engineering. ACM, 211–220.

[7] Ahmed Elkhodary, Naeem Esfahani, and Sam Malek. 2010. FUSION: a framework
for engineering self-tuning self-adaptive software systems. In Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of software
engineering. ACM, 7–16.

[8] Ocado Engineering. 2018. Ocado Smart Platform CFCs. (Jan 2018). https:
//ocadoengineering.com/warehouses/#osp_cfcs

[9] Naeem Esfahani and Sam Malek. 2013. Uncertainty in self-adaptive software
systems. In Software Engineering for Self-Adaptive Systems II. Springer, 214–238.

[10] Erann Gat and R Peter Bonnasso. 1998. On three-layer architectures. Artificial
intelligence and mobile robots 195 (1998), 210.

[11] Christian Hütter. 2016. More shuttles, less cost: energy efficient planning for
scalable high-density warehouse environments. In Twenty-Sixth International
Conference on Automated Planning and Scheduling.

[12] IBM. 2006. An architectural blueprint for autonomic computing. IBM White
Paper 31 (2006), 1–6.

[13] Didac Gil De La Iglesia and Danny Weyns. 2015. MAPE-K formal templates
to rigorously design behaviors for self-adaptive systems. ACM Transactions on
Autonomous and Adaptive Systems (TAAS) 10, 3 (2015), 15.

[14] Jeff Kramer and Jeff Magee. 2007. Self-managed systems: an architectural chal-
lenge. In 2007 Future of Software Engineering. IEEE Computer Society, 259–268.

[15] Lars Sverker Ture Lindbo, Robert Rolf Stadie, Matthew Robert Whelan, and
Christopher Richard James Brett. 2016. Apparatus for retrieving units from a
storage system. (July 7 2016). US Patent App. 14/910,858.

[16] Gabriel A Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2015.
Proactive self-adaptation under uncertainty: a probabilistic model checking ap-
proach. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 1–12.

[17] Wikipedia.org. 2002. There are Known Knowns. (Feb 2002). https://en.wikipedia.
org/wiki/There_are_known_knowns

[18] Shuo Yang, Xinjun Mao, Sen Yang, and Zhe Liu. 2017. Towards a hybrid software
architecture and multi-agent approach for autonomous robot software. Interna-
tional Journal of Advanced Robotic Systems 14, 4 (2017), 1729881417716088.

32

