
Towards Code-Aware Robotic Simulation

Vision Paper

John-Paul Ore, Carrick Detweiler, Sebastian Elbaum
Computer Science and Computer Engineering

University of Nebraska-Lincoln

Lincoln, NE, USA

jore,carrick,elbaum@cse.unl.edu

ABSTRACT

This vision paper explores the potential to dramatically enrich

robotic simulations with insights gleaned from program analysis,

and promises to be a key tool for future robot system developers to

reduce effort and find tricky corner cases. Robotic simulations are

a critical, cost-effective tool for developing, testing, and validating

robotic software. However, most robotics simulations are inten-

tionally unaware of how the code works. Our approach leverages

two recent developments: 1) automatic program analysis that can

semantically ground program variables and predicates in physical

quantities like distance, velocity, or force; and 2) standardized simu-

lation specifications that identify both what elements are simulated

and also how they are simulated. Code-aware robotic simulation

could enable robot system developers who increasingly rely on sim-

ulation to lower the cost and risk of system development by having

access to richer simulation scenarios. We describe the approach

using a detailed, step-by-step illustration for C++ using the Robot

Operating System (ROS) and the Simulation Description Format

(SDFormat), and identify key challenges to realizing this vision.

CCS CONCEPTS

• Computer systems organization → Robotics; • Software

and its engineering → Virtual worlds training simulations;

Automated static analysis;

ACM Reference Format:

John-Paul Ore, Carrick Detweiler, Sebastian Elbaum. 2018. Towards Code-

Aware Robotic Simulation: Vision Paper. In RoSE’18: RoSE’18:IEEE/ACM

1st International Workshop on Robotics Software Engineering, May 28-June

28 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 4 pages. https:

//doi.org/10.1145/3196558.3196566

1 INTRODUCTION

High-fidelity robotic simulators can reduce the cost and risk of

developing systems that interact with the world. These simulators

are governed by modeling specifications that can express a rich set

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RoSE’18, May 28-June 28 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5760-9/18/05. . . $15.00
https://doi.org/10.1145/3196558.3196566

of simulated environments and systems including obstacles, colli-

sions, temperature, lighting, fog, and the granularity of space and

time. Simulated scenarios are then composed of such models [18].

Deciding what to include and exclude in a simulation model and its

parameters is paramount to its cost-effectiveness to explore scenar-

ios of interest. While making such decisions, simulation users (often

not the code developers) are usually aware of higher-level simula-

tion goals [1, 7] but unaware of the physical elements referenced

in code, neglecting the value of code-aware robotic simulation.

As shown in Figure 1, code-aware robotic simulation (CARS)

is an automatic analysis that starts with two inputs: 1) physical

attributes referenced in code and automatically detected by program

analysis [11], such as variables that mean distances, velocities, and

forces measured in units like meters m, m·s−1, or kg·m·s−2; and, 2)
simulation specifications that encode both objects to be simulated

as well as how they are simulated. The ‘diff’ of these two inputs is

a new simulation specification that is enriched with code-aware

concerns. This new simulation specification is then used as input to

a regular simulator, but with richer specifications. CARS is enabled

by two recent developments: 1) automatic program analysis able to

identify physical attributes in code; and, 2) recent standardizations

in simulation specifications like SDFormat [5] that standardize

parameters and objects of robotic simulations, and externalize these

parameters and objects from any particular simulation software

platform, making the proposed approach more general.

Consider the simulated quadrotor in the bottom of Figure 1.

The simulation executes the quadrotor control code as a ‘black-box’

while the physics simulator provides sensor readings that change as

the quadrotor acts on the simulated world. The simulator has been

intentionally designed to be unaware of how the quadrotor’s control

code works. However, program analysis can detect thresholds in the

quadrotor control code triggering new behavior based on torque.

Figure 2 shows a snippet of actual quadrotor torque controller

code. Lines 262-263 are part of a torque controller that bounds the

commanded torque to within ±limits_.torque.x. Although this
quadrotor has several controllers, only this controller has explicit

torque limits. Automatic program analysis can determine1 that

the variable limits_.torque.x is a real-world value with units
kg·m2·s−2. The code reveals not only that torque plays a role in the
system behavior, but also that some ranges of torque values may be

worth considering (predicate in line 261). These limits can matter

when the quadrotor makes sharp turns or has a heavy payload.

The simulation specification might indicate that this simulation

does not contain sharp turns. Since sharp turns impact the system’s

1For detail on how this is done for C++ code written for the Robot Operating System
(ROS), refer to [11].

40

2018 ACM/IEEE 1st International Workshop on Robotics Software Engineering



RoSE’18, May 28-June 28 2018, Gothenburg, Sweden J. Ore et al.

Figure 1: Overview of code-aware robotic simulation.

behavior, to create a rich set of simulations it should automatically

be augmented with sharp turns to exercise the torque limits.

The envisioned approach consists of three key steps:

• Use program analysis to automatically detect physical code

concerns relevant to simulation.

• Capitalize on recent standardizations of simulation descrip-

tion specifications to connect simulation concerns to code

concerns.

• Use the difference between code concerns and simulation

specification concerns to generate a new, enhanced simula-

tion specification.

In the rest of this paper we discuss how robotic simulations

are used and identify some of the key weaknesses that this work

proposes to strengthen. We then give detailed examples of how

program analysis can be used together with analysis of simula-

tion specifications encoded in the simulation description format

(SDFormat). Lastly, we identify the key challenges moving forward.

2 SIMULATION AND ITS LIMITATIONS

This section provides a brief discussion of how robotic simulations

are used, and then describes some limitations in robotic simulation

and how our proposed approach aims to address these limitations.

Robotic Simulations. The considerable expense and hazard of

testing prototype hardware has spurred development of high-fidelity

robotic simulators. Fundamentally, these simulators model physical

processes and help ‘close-the-loop’ between sensing and acting,

generating new perceptions available as a result of changes in

the simulated world. In the case of robotic systems, these simula-

tion tools seek to approximate a system’s behavior in the world

by decomposing a system and its environment into manageable

pieces. These pieces interact according to detailed rules defined

for the simulation, including concerns such as: are the materials

deformable, do interactions behave differently because of tempera-

ture or pressure, are links rigid or elastic? These simulation rules or

specifications have a significant impact on the performance, fidelity,

and cost-effectiveness of the simulation, and are often tailored to

the goals of the simulation. These simulators are often used to sup-

port goal-oriented, task-based simulations such as those used to

test competitors in the DARPA Virtual Robotics Challenge [1, 7]

and for providing a ‘ghost’ version of a real robot for teleopera-

tion [10]. Human operators then specify a ‘goal configuration’ to a

planner that then generates sub-goals and control inputs to impel

the system toward the goal [16]. The value of these simulations is

in revealing real-world failures.

Simulation Limitations. Ideally and with sufficient resolution,

every failure in simulation corresponds to a real-world failure, and

every real-world failure can be anticipated through simulation [2, 9].

In practice, the game is one of cost-effectiveness. Independent of

the choice for simulation tool or model, a key common challenge is

deciding what elements to include and at what resolution to include

them. Clearly, more elements and resolution can improve simula-

tion fidelity but not necessarily performance, and it can definitely

increase the cost of developing and executing the simulation.

Although simulations exercise code, they are intentionally sep-

arated from it; missing in the simulation and the scenarios is the

connection to code. As Rodney Brooks observed, “Simulation is

doomed to succeed" [3], usually because the simulation fails to

capture relevant real-world concerns [2]. To overcome these limita-

tions,wepropose that robotic simulations need an awareness

of code concerns.

3 APPROACH

The goal of the approach is to automatically determine if physical

concerns present in code are addressed in simulation specifications,

and use this analysis to generate a richer simulation specification.

3.1 Approach Enablers

Simulation Description Standardization. To increase the gen-

eralization of the techniques we develop, we suggest leveraging

standardized simulation specification languages, such as the recent

SDFormat [5], V-Rep [14], and MuJoCo [17]. These languages de-

scribe not only the scenario but also the parameters governing how

the simulator should treat the resolution or granularity of space

and time, which is crucial when the system under simulation has

high control rates or low error tolerances.

Semantic Grounding of Program Variables and Predicates.

Our recent work and tool Phriky Units [11, 12] (Phriky) demon-

strate a technique to semantically ground program variables and

predicates to physical quantities like durations, distances, angular

velocities, torques, or forces. Phriky works on C++ programs built

with the Robot Operating System (ROS). ROS is a message passing

middleware [13], and standard message structures for sensor values

and motor commands are defined in shared libraries and commonly

re-used to promote code portability [6]. For example, the shared

library sensor_msgs defines a message BatteryState with an at-
tribute voltage. Phriky includes a mapping between attributes of
shared libraries and physical units for ROS messages. The mapping

41



Towards Code-Aware Robotic Simulation RoSE’18, May 28-June 28 2018, Gothenburg, Sweden

Figure 2: Quadrotor controller code that considers torque. source: https://git.io/vXKpl

Figure 3: Simulation concerns informed by code.

encodes that the attribute voltage in BatteryState has the phys-
ical units kg·m2·s−3·A−1. Phriky can then propagate these physical
units through the code using static analysis, to semantically ground

predicates and variables in physical units.

3.2 Step-by-Step Illustration

Figure 3 shows a detailed example of the CARS approach. The left-

hand-side of the figure shows code examples with concerns that

are relevant to the simulation, and the right-hand-side shows XML

elements from a simulation specification in SDFormat. Our first task

consists of identifying physically relevant elements for a simulation,

and encoding it in a target simulation specification language. Our

static analysis technique [11] of the code can determine, for example,

that the code on Line 14 of the left side of Figure 3 is concerned

with a BatteryState type that maps to the physical unit of volts.
An analysis of the simulation specification (a walkthrough of a

specification in XML with standardized fields) can verify that the

simulation addresses this kind of concern in Lines 116-117 of the

right-hand-side of Figure 3.

However, the automated analysis of the code will also reveal that

this system’s behavior can change based on a temperature threshold

on Line 9 of Figure 3 (recognized as a variable of a physical unit type

degrees Celsius) so this should be a candidate for inclusion in the
simulation specification. A slightly deeper data-flow analysis can

take this further by including not just the candidate type but also

the ranges of values to consider as per the predicate evaluation. As

seen in the code on Line 9 of Figure 3, a predicate over the variable

temp_info.temperature branches when the temperature exceeds
70 Celsius. Such predicate would help us instantiate simulation
values or ranges of values (e.g., less than 70, 70, more than 70) as

shown in the middle of Figure 3. This new specification element

helps engineers enrich the simulation scenarios.

A more sophisticated analysis of the code is necessary to de-

termine the space and time resolutions of the simulation, which

are usually set through global standard parameters. For example,

a robotic surgeon might require smaller resolution than a mining

electric rope shovel [4], yet guidance for selecting that resolution is

often disconnected from the code. To detect such resolution values

we will start by searching for constants either in configuration,

header, or launch files, and analyzing whether those constants are

compared (directly or through propagation) with physical units of

distance or duration base types. As an example, the code on Line

42



RoSE’18, May 28-June 28 2018, Gothenburg, Sweden J. Ore et al.

1 of Figure 3 shows a variable goal_threshold_, with physical
units in meters, appearing within a predicate that determines if
the system position is sufficiently close to goal. The magnitude
of goal_threshold_ determines a required lower bound for the
spatial resolution or granularity of the simulation, one that serves

a potential value of resolution to consider for this simulation. The

code analysis determines that goal_threshold_ is 0.02m, and that
the simulation specification should have at least this accuracy in

spatial resolution, as shown in the enriched Simulation Specifica-

tion’ in the middle of Figure 3.

This example shows how semantic program analysis can re-

veal concerns that can be automatically compared with simulation

specifications to identify ways to improve robotic simulations.

4 MOVING FORWARD

Our preliminary examination shows that system code often con-

tains clues about elements of the environment that may impact

the system behavior and hence are likely to be relevant to include

in simulation environments. However, moving forward there are

several challenges.

One challenge of CARS is correctly matching code concerns with

corresponding elements in the simulation specification. Although

an analysis of the code might correctly identify that battery voltage

is a concern, there might be multiple matching elements in the

simulation specification. It should be possible to start with an over-

approximation of potential concerns and to flag ambiguities for

further review.

Extending CARS beyond C++ or ROS is a challenge because it

requires semantically grounding variables and predicates, either

with annotations or language support. Other languages like Java

have been grounded to physical units with extensive programmer

annotations [19]. Beyond ROS, Simulink blocks can be linked to

physical units with type systems like SimCheck [15], but this still

incurs an annotation burden. Variables can also be grounded with

specialized languages like F# that has unit support as envisioned
by Kennedy [8]. Regardless of the language or robot architecture,

CARS analysis proceeds the same after the variables and predicates

are grounded.

Managing the complexity of the combinatorial space of code

concerns might also be a challenge. In a large codebase, there might

be many combinations of simulation parameters inferred by the

code, requiring a separate simulation for each combination. Effi-

ciently managing this complexity might require new heuristics for

ordering simulations by a prioritization scheme.

Another challenge is determining how andwhen to deploy CARS

in a systems’ life-cycle. We believe CARS will not displace current

techniques of robotic simulation that are not code-aware, but rather

that CARS will augment and enrich simulation techniques, and that

both will be a critical part of creating and testing robotic systems.

In summary, this vision paper explores how physical attributes

in code can enrich simulation scenarios and parameters, so that

system designers can better investigate the interplay of robotic

systems and potential environments. If successful, this approach

could dramatically improve the way robotic systems are explored

through simulation.

ACKNOWLEDGMENTS

This work is supported by NSF CCF-1718040.

REFERENCES
[1] C. E. Agüero, N. Koenig, I. Chen, H. Boyer, S. Peters, J. Hsu, B. Gerkey, S. Paepcke,

J. L. Rivero, J. Manzo, E. Krotkov, and G. Pratt. 2015. Inside the Virtual Robotics
Challenge: Simulating Real-Time Robotic Disaster Response. IEEE Transactions
on Automation Science and Engineering 12, 2 (April 2015), 494–506. https://doi.
org/10.1109/TASE.2014.2368997

[2] S. Balakirsky, S. Carpin, G. Dimitoglou, and B. Balaguer. 2009. From Simulation to
Real Robots with Predictable Results: Methods and Examples. Springer US, Boston,
MA, 113–137. https://doi.org/10.1007/978-1-4419-0492-8_6

[3] Rodney A. Brooks and Maja J. Mataric. 1993. Real Robots, Real Learning Problems.
Springer US, Boston, MA, 193–213. https://doi.org/10.1007/978-1-4615-3184-5_8

[4] Matthew Dunbabin and Peter Corke. 2006. Autonomous excavation using a rope
shovel. Journal of Field Robotics 23, 6-7 (2006), 379–394. https://doi.org/10.1002/
rob.20132

[5] Open Source Robotics Foundation. 2016. SDFormat, a description language for
Scientific Robotic Simulation. (2016). http://sdformat.org/spec http://sdformat.
org/spec.

[6] Open Source Robotics Foundation. 2018. ROS Common messages. (2018). http:
//wiki.ros.org/common_msgs http://wiki.ros.org/common_msgs.

[7] JohnM. Hsu and Steven C. Peters. 2014. Extending Open Dynamics Engine for the
DARPA Virtual Robotics Challenge. In Simulation, Modeling, and Programming
for Autonomous Robots, Davide Brugali, Jan F. Broenink, Torsten Kroeger, and
Bruce A. MacDonald (Eds.). Springer International Publishing, Cham, 37–48.

[8] Andrew Kennedy. 2009. Types for Units-of-Measure: Theory and Practice. In
Central European Functional Programming School - Third Summer School, CEFP
2009, Budapest, Hungary, May 21-23, 2009 and Komárno, Slovakia, May 25-30, 2009,
Revised Selected Lectures. 268–305. https://doi.org/10.1007/978-3-642-17685-2_8

[9] T. Kyriacou, U. Nehmzow, R. Iglesias, and S.A. Billings. 2008. Accurate robot
simulation through system identification. Robotics and Autonomous Systems
56, 12 (2008), 1082 – 1093. https://doi.org/10.1016/j.robot.2008.01.005 Towards
Autonomous Robotic Systems 2008: Mobile Robotics in the UK.

[10] Robin R. Murphy. 2015. Meta-analysis of Autonomy at the DARPA Robotics
Challenge Trials. Journal of Field Robotics 32, 2 (2015), 189–191. https://doi.org/
10.1002/rob.21578

[11] John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. 2017. Lightweight
Detection of Physical Unit Inconsistencies Without Program Annotations. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2017). ACM, New York, NY, USA, 341–351. https://doi.org/
10.1145/3092703.3092722

[12] John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. 2017. Phriky-units:
A Lightweight, Annotation-free Physical Unit Inconsistency Detection Tool.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2017). ACM, New York, NY, USA, 352–355. https:
//doi.org/10.1145/3092703.3098219

[13] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3.2. Kobe, Japan, 5.

[14] E. Rohmer, S. P. N. Singh, and M. Freese. 2013. V-REP: A versatile and scalable ro-
bot simulation framework. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 1321–1326. https://doi.org/10.1109/IROS.2013.6696520

[15] Pritam Roy and Natarajan Shankar. 2010. SimCheck: An Expressive Type System
for Simulink. In Second NASA Formal Methods Symposium - NFM 2010, Washington
D.C., USA, April 13-15, 2010. Proceedings (NASA Conference Proceedings), César A.
Muñoz (Ed.), Vol. NASA/CP-2010-216215. 149–160.

[16] R. Tedrake, M. Fallon, S. Karumanchi, S. Kuindersma, M. Antone, T. Schneider,
T. Howard, M. Walter, H. Dai, R. Deits, M. Fleder, D. Fourie, R. Hammoud, S.
Hemachandra, P. Ilardi, C. Perez-D’Arpino, S. Pillai, A. Valenzuela, C. Cantu, C.
Dolan, I. Evans, S. Jorgensen, J. Kristeller, J. A. Shah, K. Iagnemma, and S. Teller.
2014. A summary of team MIT’s approach to the virtual robotics challenge. In
2014 IEEE International Conference on Robotics and Automation (ICRA). 2087–2087.
https://doi.org/10.1109/ICRA.2014.6907140

[17] E. Todorov, T. Erez, and Y. Tassa. 2012. MuJoCo: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 5026–5033. https://doi.org/10.1109/IROS.2012.6386109

[18] Leon Žlajpah. 2008. Simulation in robotics. Mathematics and Computers in
Simulation 79, 4 (2008), 879–897. https://doi.org/10.1016/j.matcom.2008.02.017

[19] Jian Xiang, John C. Knight, and Kevin J. Sullivan. 2015. Real-World Types and
Their Application. In Computer Safety, Reliability, and Security - 34th International
Conference, SAFECOMP 2015 Delft, Netherlands, September 23-25, 2015. Proceedings
(Lecture Notes in Computer Science), Floor Koornneef and Coen van Gulijk (Eds.),
Vol. 9337. Springer, 471–484. https://doi.org/10.1007/978-3-319-24255-2_34

43


