
Towards Rapid Composition with Confidence
in Robotics Software

Neil A. Ernst
Computer Science

University of Victoria

Victoria, BC

nernst@uvic.ca

Rick Kazman
SEI/CMU and

University of Hawaii

Honolulu, HI

kazman@hawaii.edu

Philip Bianco
Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA

pbianco@sei.cmu.edu

ABSTRACT

Robotics software is booming thanks in part to a rich and produc-

tive ecosystem around the Robot Operating System. We introduce

amilitary effort to leverage the ROS ecosystem and reduce the chal-

lenges in building military robots, called ROS-M. We outline some

of the work we have done on the ROS-M initiative, and explain our

future directions in analyzing ROS code to balance between rapid

adoption and confidence in the component.

KEYWORDS

robotics software, ROS, quality attribute requirements

ACM Reference Format:

Neil A. Ernst, Rick Kazman, and Philip Bianco. 2018. Towards Rapid Compo-

sitionwith Confidence in Robotics Software. In RoSE’18: RoSE’18:IEEE/ACM

1st International Workshop on Robotics Software Engineering , May 28 2018,

Gothenburg, Sweden. ACM, New York, NY, USA, 4 pages. https://doi.org/10.

1145/3196558.3196567

1 INTRODUCTION

One of the pressing concerns in government and military acquisi-

tion is openness to enable ‘rapid fielding’. Rapid fielding is a mili-

tary term that means a focus on rapid capability delivery, e.g., be-

ing able to adopt software patches in a matter of days or hours,

instead of weeks or months. In particular, recent trends have been

to favour systems that have an underlying open architecture. Open

architecture is a term of art meaning some combination of shared

data standards, common infrastructure, interface standards, and so

on. Government software acquisition is supporting open architec-

tures to open up the space of possible vendors who respond to re-

quests for proposal, and ultimately to make systems that are much

more responsive to change. Past (and most current) systems were

largely designed to favour the incumbent, using a contractor’s pro-

prietary suite of messaging, data sharing and other key interac-

tions. This made it extremely difficult to change horses midstream

(e.g. for non-performance), since potential new contractors had a

very difficult time understanding or accessing the underlying code.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

RoSE’18, May 28 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the As-
sociation for Computing Machinery.
ACM ISBN 978-1-4503-5760-9/18/05. . . $15.00
https://doi.org/10.1145/3196558.3196567

It also made it very difficult to adopt new innovations (for example,

in LIDAR processing). The contractor of record had to evaluate the

new technology, then wrap it in a proprietary data exchange layer.

In an ideal open architecture, the technical challenge of adoption,

that is, making it work with the existing system, is greatly simpli-

fied.

In the robotics space, the Robot Operating System (ROS)[8] is

an excellent example of an open architecture. The ROS-military

(ROS-M) initiative aims to leverage ROS as an open architecture

for military applications. However, a big challenge for government

use of open architectures like ROS is to balance rapid composi-

tion with confidence that the component chosen will behave as ex-

pected. ROS’s early history is in robotics research, where downside

risks are relatively small. The military context is obviously quite

different. This obviously includes security concerns, but our use

of the word confidence is about “correct operation”, and therefore

also involves questions about performance, availability, maintain-

ability, and other quality attributes. In this paper we describe some

of the challenges facing ROS-M, show why it is an interesting ex-

ample for robotics software, and explain the research we are doing

on ROS-M.

2 THE ROS-M ECOSYSTEM

ROS-M is a community development initiative designed to meet

the unique needs of military robots. The intent of ROS-M is to

add more robust simulators, cyber assurance, and controlled code

repositories to ROS. The concept is to leverage the existing rich

ROS ecosystem, and in particular, the well-understoodmiddleware

and message passing layers. Military needs are different than com-

mercial robotics companies and researchers, of course, so ROS-M

addsways to ensure the software ismore reliable. ROS-Mpromotes

code sharing and reuse, especially for components whose distribu-

tion is restricted due to national security or export control con-

cerns.

A recent ROS-M working group [2] focused on code quality

standards that ROS-M components should respect. For example,

there is a range ofmaturity levels in components in the ROS ecosys-

tem, ranging from Google-supported and field-tested libraries, to

cutting-edge research releases with little to no documentation or

testing. Integrating a component into a military-grade system re-

quires a thorough understanding of that component’s API specifi-

cations, gaps in completeness, and ability tomeet certain quality at-

tribute requirements. On the other hand, being too restrictive and

demanding—for example, insisting on complete maturity model

conformance—means narrowing the field of potential components

44

2018 ACM/IEEE 1st International Workshop on Robotics Software Engineering

RoSE’18, May 28 2018, Gothenburg, Sweden Neil A. Ernst, Rick Kazman, and Philip Bianco

and increasing the time before a component can be fielded. ROS-

M must therefore balance between complete confidence and rapid

fielding. We are finding interesting research challenges abound in

understanding this tradeoff.

3 COMPOSING ROS SYSTEMS

The tradeoff between confidence and rapid adoption is at its heart

a composition problem. ROS systems are composed of many, rela-

tively independent sub-systems, such as planners and vision pro-

cessing elements [8]. The challenge is how to integrate a given

component into the larger set of components. While there are nu-

merous technical challenges to overcome (e.g. understanding the

message format, and updating other components with new capa-

bility), we focus on the component assessment challenge. Solving

this challenge means giving the integrator confidence that the can-

didate component will meet the system’s key quality attribute re-

quirements, without posing an undue risk to the overall system.

Typically defense software runs in tightly controlled environ-

ments where all components are directly managed by the system

integrator or prime contractor. This is at odds with modern soft-

ware development practices that increasingly rely on composition

of components from various sources, leading to two problems: au-

thority to deploy a system is slow, cumbersome, and hinders rapid

systemfielding/release/update [4]. Secondly, adoptingmodern soft-

ware practices means accepting loss of some control; no one entity

will control all components. This is particularly true in software

ecosystems like ROS-M [10].

4 OUR APPROACH

Our scenario is an engineer working with a unmanned ground ve-

hicle (UGV) using ROS-M. She wants to adopt a ROS package for

doing SLAM (simultaneous localization and mapping) [9], and has

(at least) three ROS 2.0 choices: Google’s Cartographer1, Gmap-

ping2, and MRPT’s mrpt_rbpf_slam3. To choose one of these for

her system, she needs to understand three things. First, she must

know about its relevant quality attribute indicators (e.g., codemain-

tainability, API documentation, performance, accuracy). Here, rel-

evance means "with respect to her vehicle and task". Secondly, she

needs to understand the project health indicators for that package

(number of contributors, licence, number of recent commits, docu-

mentation status, package dependency chains). Project health will

help her (and the maintenance team) understand how likely this

component will be supported in the future, among other things.

Finally, she needs to understand how, and where, the component

could affect her system, in other words, how it will be integrated

with what she already has.

Understanding how a component interacts with her system is

necessary to appropriately mitigate any risks to the system’s abil-

ity to fulfil its mission. In this case, we would need evidence for

what type of data the SLAMpackage sends and expects; how errors

are handled; and what CPU and network load it might impose. An

1https://opensource.googleblog.com/2016/10/introducing-cartographer.html
2http://wiki.ros.org/gmapping
3https://www.mrpt.org/list-of-mrpt-apps/application-rbpf-slam/

example source of evidence would be the results of a network traf-

fic analysis using a sample task in a lab setting, showingmean/peak

data volumes.

Rather than focus on tools to collect information, we see the

research challenges as:

(1) correctly and accurately identifying and modeling the set of

components and interactions in a given system;

(2) identifying andmeasuring relevant robotics and operational

environment indicators for system quality attributes;

(3) aggregating these indicators to support effective trade-off

analysis.

Since documentation seldom represents ground truth, our ap-

proach is based on direct observations and analyses of the source

code (where available) and the running software and related arti-

facts (e.g., file system changes).

5 METHODOLOGY AND PROGRESS TO DATE

Our approach is to produce a ‘Consumer Reports’ style matrix

showing the capabilities of each component against a set of im-

portant indicators. Figs. 1 and 2 shows what such an output might

resemble.

To create reports like this, we follow the following steps:

(1) Define a generic set of component indicators to discover.

Start with existing quality attribute catalogs to determine

what kinds of indicators are relevant to the scenario. Re-

view observable resources for systems running on *nix (e.g.,

system process calls, network layers, heap memory, and file

system) (bottom-up). This activity is independent of ROS.

(2) Identify a set of data collection mechanisms for each indica-

tor. Find candidate measurement tools and approaches (e.g.,

profilers, static analysis tools, and manual code review).

(3) Identify tool inputs: source, binaries, commit history, issues,

problem reports, KPPs.

(4) Apply analyses to each candidate component (e.g. use a com-

ponent’s internal test harness, run tools over collected project

artifacts)

(5) Aggregate data: use expert input to elicit weighting criteria

(e.g., peak load, design hotspots, vulnerability collection)

(6) Validate on open source corpus andwith industry stakehold-

ers.

We have begun by creating a project workbench based around

a Gazebo simulation environment with a commercial UGV sys-

tem, Husky, and the three SLAM components above (Cartographer,

GMapping, and mrpt_rbpf_slam). Fig. 3 shows the details.

5.1 Preliminary Results

We identified the following project health indicators (Table 1) and

quality attribute indicators (Table 2). Clearly the two candidates

(the grey columns) are quite different, and pose some interesting

dilemmas for the hypothetical integrator. For example, the code

base for Cartographer is over twice as large, yet the code is updated

frequently in comparison to Gmapping.With respect to our quality

attribute indicators, some commonmetrics for maintainability sug-

gest Gmapping is slightly simpler to maintain. A major challenge

is to determine exactly what constitutes the component boundary:

45

Towards Rapid Composition with Confidence

in Robotics Software
RoSE’18, May 28 2018, Gothenburg, Sweden

Figure 1: Sample Project Health Indicators Figure 2: Sample Project QA Indicators

RVI Gazebo

ROS
CPP

GMapping

Cartographer Mrpt_rbpf_slam

Jackal Husky

Kinect Laser

ROS

Presentation

Utilities

Vehicle Sim

Sensors

Key

Package

Layer

Uses

Figure 3: Current workbench

Gmapping, for example, has a ROS wrapper around a third-party

library (along with numerous dependencies on core packages).

5.2 Validation

To validate our eventual conclusions (i.e., “choose component X”),

we plan for the following. To test our Tool Correctness (i.e., inter-

nal validity), we will measure against known component measures

(for example, third party benchmarking results) and aggregation

functions. To ensure we are not overfitting to a particular type of

component, we will use a train/test concept, where we ‘train’ our

process on one component, then test it on new ROS component

types to measure the bias and variance of our functions. To test if

we Increase Confidence in adopting a particular component (i.e.,

by using the scoreboard), we will ask ROS experts for past prob-

lematic indicators and measures (e.g. use of an O(n2) algorithm in

a component). We will then inject some of these problems into the

appropriate components, and see if our scorecard flags over 90% of

the injected problems. We also plan to conduct a stakeholder sur-

vey, and aim to show a doubling of confidence, e.g. from 2 to 4, on

a 5 point Likert scale.

To measure if our scorecard leads to Reduced Decision Time,

we will baseline current approaches, and assess if our scorecard

result (post-setup) achieved 1 sigma faster than a developer acting

without our tool. Finally, to assess Operational Validity, we will

demonstrate the tool to our operational stakeholders and collect

feedback.

6 DISCUSSION

Building an accurate scorecard relies on tools that correctly char-

acterize the quality attribute characteristics of a given component,

and a suitable testbed in which to deploy the component. While

static and dynamic analysis tools are incomplete (e.g., the fact that

a component is well behaved during profiling may not be indica-

tive of its true behavior at run-time), the generated data will be

a significant improvement over current analyses. Future work in-

cludes extending the automated analysis into automatically find-

ing ’safe’ componentswith little human interaction, in an autonomous

software system. Potential future application could be to inform

policymakers ofwhat level of insight, analysis, and risk is expected

with the use of external components.

A key research question is what aggregate function to use to cre-

ate the final component score from the individual indicator scores.

Possible choices include equal weighting: sum all indicators, nor-

malize to 0..1; another choice is to normalize to industry baselines

and categorize as high, medium, low (e.g., for SLOC). Our current

approach is to give each indicator a weightw based on our model

of priority. This model is derived from interviews and short ana-

lytical hierarchy process (AHP) prioritization exercises. We then

normalize metrics as necessary for different denominators such as

46

RoSE’18, May 28 2018, Gothenburg, Sweden Neil A. Ernst, Rick Kazman, and Philip Bianco

Property Indicator Tool Cartographer Gmapping

Codebase LOC SLOCcount 17.5 SKLOC C++ 7.6 SKLOC C++

License Manual Apache 2 BSD-3

Commit frequency Code-Maat 87 3

Team # developers Code-Maat 13 1

Table 1: Project Health Indicators

Quality Attribute Indicator Tool Cartographer Gmapping

Performance CPU usage gprof in progress in progress

% memory used valgrind in progress in progress

Maintainability Arch. flaws DV8 0 2

Level of coupling DV8 17.1% 12%

Total Dependencies Understand 564 156

Table 2: Project Quality Attribute Indicators

SLOC, programming language (so that Python code is not penal-

ized for verbosity, for example). Next, we create customizable tem-

plates, based on stakeholder interviews. An example aggregation

template could be

(wM1 ∗wM2) + 2(wP1 ∗ loд(wP2)) + 3(wS1)

WhereM, P , S areMaintainability, Performance, Security indica-

tor instances, adjusted by some weightw . This particular example

weights Security three times as important as maintainability.

7 RELATEDWORK

Other good examples of open architectures in the US government

include the US Navy’s Future Airborne Capability Environment

(FACE4), and the Air Force’s Open Mission Systems initiative. The

ROS-Industrial initiative is similar to ROS-M but with a commer-

cial focus. The complex/safety-critical systems space is awash in

standards focusing on interoperability and safety.

Software composition research has its origins in component-

based software engineering [7] and Open Source Software (OSS)

and Commercial Off the Shelf (COTS) adoption [5]. It is important

to leverage advances in those areas, while retaining a ROS flavour.

We feel major differences include the shared set of middleware,

wide range of component quality, and potential for run-time ad-

justment.

Currently, software systems used inmilitary settings go through

a risk assessment process before being given authority to operate.

These risk-based approaches are an improvement over compliance

checking, yet as Fabius notes, "[there is a] lack of supporting tools

to help determine which safeguards are most appropriate [4]". Re-

cent research has focused on shallow enumeration of all dependen-

cies using build files [1], identifying versioning problems in depen-

dencies [3], or identifying external dependencies from signatures

[6]. IonChannel with the US National Geospatial Agency [1] sim-

ply enumerates dependencies. These approaches do not discrim-

inate among different types of dependencies and fail to capture

others that are relevant to risk analysis.

4https://www.opengroup.us/face/

8 CONCLUSION

We have presented ROS-M, an initiative to leverage the open archi-

tecture of the ROS ecosystem to improve adoption time formilitary

robotics. We explained ROS-M, and then introduced our research

approach for evaluating possible components for adoption into an

existing system. The adoption decision must balance component

capabilities against possible risks. This decision can be supported

by understanding of how a component scores on a set of aggre-

gated quality indicators.

REFERENCES
[1] Sebastian Benthall, Travis Pinney, JC Herz, and Kit Plummer. “An Ecological

Approach to Software Supply Chain Risk Management”. In: 15th Python in
Science Conference. 2016.

[2] Jonathan Chu. Army Robotics in the Military. 2017. url: https://insights.sei.
cmu.edu/sei_blog/2017/06/army- robotics- in- the-military.html (visited on
June 12, 2017).

[3] J. Dietrich, K. Jezek, and P. Brada. “What Java developers know about compati-
bility, and why this matters”. In: Empirical Software Engineering (2016), p. 1371.
doi: 10.1007/s10664-015-9389-1.

[4] Jennifer Fabius and Richard Graubart. Beyond Compliance—Addressing the Po-
litical, Cultural and Technical Dimensions of Applying the Risk Management
Framework. Tech. rep. PR-14-3551. MITRE, 2014. url: https://www.mitre.org/
sites/default/files/publications/pr- 14- 3551- beyond- compliance- applying-
risk-management-framework.pdf.

[5] Ian Gorton, Anna Liu, and Paul Brebner. “Rigorous evaluation of COTS mid-
dleware technology”. In: Computer 36.3 (2003), pp. 50–55.

[6] Takashi Ishio, Raula Gaikovina Kula, Tetsuya Kanda, Daniel M. German, and
Katsuro Inoue. “Software Ingredients: Detection of Third-party Component
Reuse in Java Software Release”. In: Proceedings of the International Working
Conference on Mining Software Repositories. 2016, pp. 339–350. doi: 10.1145/
2901739.2901773.

[7] Wojtek Kozaczynski and Grady Booch. “Component-based software engineer-
ing”. In: IEEE software 15.5 (1998), p. 34.

[8] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, RobWheeler, and Andrew YNg. “ROS: an open-source Robot Operating
System”. In: ICRA workshop on open source software. Vol. 3. 3.2. Kobe, Japan.
2009, p. 5.

[9] Søren Riisgaard and Morten Rufus Blas. SLAM for Dummies: A Tutorial Ap-
proach to Simultaneous Localization and Mapping. Tech. rep. MIT, 2005. url:
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-
robotics-spring-2005/projects/1aslam_blas_repo.pdf.

[10] B. Sadowski. Shaping the Future: Army Robotics and Autonomous Systems. Tech.
rep. National Defense Industry Association, 2016. url: http://www.dtic.mil/
ndia/2016GRCCE/Saowski.pdf.

47

