2019 IEEE/ACM 2nd International Workshop on Robotics Software Engineering (RoSE)

MAPmMAKER: Performing Multi-Robot LTL
Planning Under Uncertainty

Sergio Garcia*, Claudio Menghif, and Patrizio Pelliccione**
*Chalmers | University of Gothenburg, Gothenburg (Sweden)
t University of Luxembourg, Luxembourg City (Luxembourg)
t University of L’Aquila, L’ Aquila (Italy)
Email: sergio.garcia@gu.se, claudio.menghi@uni.lu, patrizio.pelliccione @gu.se

Abstract—Robot applications are being increasingly used in
real life to help humans performing dangerous, heavy, and/or
monotonous tasks. They usually rely on planners that given a
robot or a team of robots compute plans that specify how the
robot(s) can fulfill their missions. Current robot applications ask
for planners that make automated planning possible even when
only partial knowledge about the environment in which the robots
are deployed is available. To tackle such challenges we developed
MAPmMAKER, which provides a decentralized planning solution
and is able to work in partially known environments. Decentral-
ization is realized by decomposing the robotic team into subteams
based on their missions, and then by running a classical planning
algorithm. Partial knowledge is handled by calling several times
a classical planning algorithm.

Demo video available at: https://youtu.be/TJzC_u2yfzQ

I. INTRODUCTION

Robotic applications usually rely on a set of robots that
are used to perform missions. The term mission can refer
to a global mission, i.e., the high-level mission that must be
accomplished by the whole team [1] or a local mission, i.e.,
the mission that should be achieved by a single robot, possibly
by collaborating with other robots [2]. Planners are one of
the main ingredients that allow robots to achieve missions.
A planner is a software component that receives as input
a model of the robotic application and computes a set of
actions—a plan—that, if performed, allow the achievement of
a desired mission [3]. Recent works in robotics have defined
robot applications using finite transition systems and some of
them define their local missions as a Linear-time Temporal
Logic (LTL) property (e.g., [2], [4]-[6]). Current robotic
applications require planners to address two main challenges:
1) the planning algorithm should work when (only) partial
knowledge about the system—including the robots and their
working environment—is present; 2) the planning problem
should be solved by decentralized algorithms that help to
reduce the planning overhead.

Several works studied centralized planners that are able
to manage feams of robots that collaborate to achieve a
certain goal (a global mission) [1], [7]. However, planning
is computationally expensive, especially when the number of
robots within the team increases and they need to collaborate
to fulfill their local missions. For this reason, research interest
had focused on decomposing a global mission into a set of
local missions to be achieved by each robot of the team [2],

978-1-7281-2249-6/19/$31.00 ©2019 IEEE
DOI 10.1109/RoSE.2019.00008

[5], [8]. These local missions have been recently exploited
by decentralized planners [2], i.e., planners that instead of
evaluating the global mission over the whole team of robots,
analyze the satisfaction of local missions inside a subset of the
team of robots. In this way, the problem of finding a collective
team behavior is decomposed into sub-problems that avoid the
expensive fully centralized planning. However, the applicability
of these algorithms has never been studied when only partial
knowledge about the system is available.

The role of partial knowledge or uncertainty in software de-
velopment has been strongly studied in literature. Research has
been done on how to consider partial knowledge in requirement
analysis and elicitation [9]-[11], in the development of a model
of the system that satisfies a set of desired properties [12]—
[16], and in checking whether an already designed model
possesses some properties of interest [17]-[19]. However,
most of the existing planners assume that the environment in
which the robots are deployed is known [20]. This assumption
does not usually hold in real-word scenarios [21], where,
for example, the robots navigate in environments affected by
natural disasters, where the movement between locations or
the execution of specific actions may be impossible. While
planners that consider partial information about the environment
in which the robots operate exist (e.g., [22]-[24]), they usually
rely on probabilistic algorithms and are not decentralized.

This work presents MAPmAKER: a Multi-robot plAnner
for PArtially Known EnviRonments. MAPmAKER provides a
decentralized planning solution that works in partially known
environments. Decentralization is realized by decomposing the
robotic team into subteams based on their missions, and then
by running a classical planning algorithm. Partial knowledge
is handled by calling twice a classical planning algorithm.
The theory that supports MAPmMAKER including proofs of
correctness, a detailed description of the modelling formalisms,
and the verification procedures can be found in [4]. In this
paper we present the implementation of MAPmAKER, the
components that compound it, the models it uses, and how
it can be used. We also provide a demonstration video to
illustrate such concepts. In this sense, the contribution is more
a proof of concept than a tool ready to be used for real-world
scenarios. MAPmAKER builds upon the planner proposed by
Tumova et al. [2] and is evaluated by analyzing its behavior
on a robot application simulating a hospital environment with

the presence of uncertainty. MAPmAKER together with 1) a
complete replication package, 2) a set of videos showing
MAPmMAKER'’s performance solving the scenario presented at
the previous bullet, and 3) a brief user guide that defines the

main functionalities are available at our Github repository [25].

I1. MAPMAKER’S OVERVIEW

An overview of MAPmAKER is shown in Fig. 1. The
MAPmMAKER's planner takes as input the models of the robots
(@), of the environment in which they are deployed (@), and
of each robot’s mission (@), Both the models of the robots
and their environment may be partial since they may contain
information uncertainty. The implemented planner is able to
compute plans that definitely ensure the mission satisfaction,
i.e., definitive plans ((4)), and plans that may ensure property
satisfaction since they depend on some partial knowledge

present in the models of the robots and the environment ((5)).

More precisely, a definitive plan is a sequence of actions (e.g.,
move from a to b) that ensure the satisfaction of the local
mission for each robot. A pessible plan is a sequence of
actions that may satisfy the local mission due to some unknown
information about the model of the robots or the environment
in which they are deployed. If MAPmMAKER is not able to find
neither a definitive nor a possible plan a message is sent to
the user ((6). Otherwise, the Plan selector chooses between
definitive and possible plans (if both are present) or chooses the
possible plan if no definitive plan is present. Definitive plans
are not present when the only way to satisfy the local mission
is based on some unknown information about the model of

the robots or the environment in which they are deployed.

MAPmMAKER then executes the selected plan (@).

As robots perform plans, information about uncertain parts
of the model is detected. MAPmAKER updates the models
with the detected information {} and if it detects that a plan

is not anymore executable, the planner is re-executed (@]‘

In the following, we provide some additional information
about the inputs processed by MAPmAKER, the planning
algorithm, the selection between definitive and possible plans
and how models are updated when information about uncertain
parts is detected.

Models of the robots and their environment. The models
of the robots and their environments are provided using a
specific form of transition system that allows the specification of
uncertain parts; further information might be found in [4]. There
is one Robotx.m (e.g., Robot1) file for each robot in the
global mission, containing a function that generates the robot’s
model. Each file contains information about the robot, like its
id, the atomic prepositions of the LTL formula it may perform,
its initial position, services provided by the robot, etc. The
MissionRobotx.m file contains a correspondent function
for each robot model, which encodes the number of actions
the robot must perform and whether it is required that other
robots must help it to accomplish certain actions and returns an
automaton corresponding with an LTL formula (the transitions
within this file describe the formula). The environment is

| MAPmMAKER PY |
| Mission no ‘ A I
I —"l Environment p!lans |
| I
- :
I §_ Definitive
| o Robot | plans |
I i |
I __-—Tiggers :
| et
S T) [Flan Exccuton] — J
s s e S g et S | e i S i i i .
f Running system I
Legend .
i —, Information flow
Artifacts (Components) l System Components | Triggers
______ I e iy e

Fig. 1: Overview of MAPmAKER.

defined as a grid where transitions between its conforming
cells may or may not be possible. This information is encoded
in two environment models: one that contains uncertainty
e.g., EnvironmentMap.m and one that does not (e.g.,
RealEnvironmentMap.m). For more technical details, the
interested reader can refer to the provided repository [25].

The proposed models embed partial knowledge as follows:
e Fartial knowledge about the actions execution. The execution
of some actions is uncertain, meaning that it is unclear whether
an action can be executed. This type of partial knowledge
allows specifying that the transition between two of the cells
of the grid map of the environment (see Fig. 2) can be: always
possible, always impossible (i.e. a wall), or not known (i.e. a
door between two rooms that can be open or closed).

e Unknown service provisioning. 1t is unclear whether a
service—i.e., “events of interest associated with execution of
certain actions rather than over atomic propositions™ [S]—can
be provided in a specific location. For example, it is unclear
whether a robot can take a picture in a given map location.
This uncertainty may be caused for example by the presence
of an object that covers the robot visual in that location.

e Unknown meeting capabilities. Robots can meet and synchro-
nize in certain locations. For example, it is unclear whether
two robots can exchange a load in a given map location. This
uncertainty may be caused by a collapsing registered in the
environment where the robots are deployed.

Our tool may be classified at level 2 using the taxonomy
presented in [26] as when uncertainty is detected, during run-
time the system adapts and computes a new plan.

Mission specification. Each robot is able to perform a
complex mission, which is specified using an LTL formula.
This formula specifies how the services must be provided by
the robots. For example, a mission for a robot r; may require
ry to periodically load debris on ro. Thus, in order to allow
robot ry to fulfill its mission, it is necessary that robots r; and
ro synchronize their behaviours.

Planning. The Planner uses the models of the robot(s)

and the environment to compute plans that allow satisfying
the missions of the robots. It distributes the robots of the
robotic application into subteams (i.e., “dependency classes”™)
based on the mission that each robot has to achieve. Each
dependency class contains a subset of robots that depend on
each other for achieving their missions. After dependency
classes are computed they are considered in isolation regarding
the computation of plans.

To compute a plan for a dependency class the LTL formulae
that are used to describe missions are evaluated on partial
models. Possible and definitive plans are computed by executing
a classical planning algorithm twice: once for computing
possible plans and once for computing definitive plans.

Choosing between definitive and possible plans. The Plan
selector chooses between possible and definitive plans. Several
policies can be applied to choose between these plans. Possible
plans can be chosen only in cases in which a definitive plan
is not present. Another policy may choose the plan with the
shortest length, or it may consider non-functional aspects of
the plans e.g., time to perform certain actions, or likelihood of
detecting true or false evidence about partial information. In this
work we assume that the planner always chooses the shortest
length plan. This policy may reduce energy consumption.

Detection of uncertain information. As robots perform
actions and navigate within the environment, information
regarding uncertain services and meeting capabilities can be
detected. Specifically, robots detect whether actions, services,
and meeting capabilities are executable, provided, and possible,
respectively. MAPmAKER updates the models of the robots
and of the environment with the detected information. Then,
if needed, the planning algorithm is triggered and re-executed.

1. MAPMAKER IN ACTION

MAPmMAKER is developed as a MATLAB [27] standalone
application. It is developed on top of an existing planner—
presented in [2]—which has been chosen since it already
implements a decentralized planning procedure. MAPmAKER
calls this planner twice considering two different versions of
the model of the robots and their environments. The results
obtained by performing this procedure are sound and correct.
Additional details and proofs can be found in [4].

1| mapmakerRunner (robots, environment , missions);
2| mapmaker_exp(’Scenaric’, "Experiment’, ’'Location’)

Listing 1: Running MAPmAKER

MAPmMAKER can be executed in two ways, as shown
in Listing 1. The first option is used to compute plans for
custom models of mission, environment, and robots. robots
is a variable that specifies the number of robots and their
models. environment is a model of the environment and
its uncertainty. missions contains the local mission to be
achieved by each robot. With the second option, we provide
a way of replicating the experiments presented in this paper
and in [4]. Scenario is a .m file containing the model of
the environment and the robots. Experiment encodes each

robot’s mission. Locat ion defines where the experiments are
allocated—i.e., RQ1, RQ2, or RunningExample.

1 """‘. = °°°“. 49
2 | ez
LN l‘ !
N 1 !
] \‘,‘_ M P3 42
o . 7 4)\
]
35

e | LS

et

3 28|

; 3 3

1 P2

I 21

]

1

;)

: -~ I ae

e ——

1 - %

1 w 4 A0 NG
oot 1 —— Te
s &l

5 ? e

¢1 = G(F(help_grasping)): ry periodically helps r2 with grasping
(service help_grasping associated with action 1).

¢2 = G(F(fetrch_supplies\F(deliver))): ra repeatedly fetches
supplies (service ferch_supplies, action 2) and delivers them
(service deliver, action 3).

o3 = G(F(rake_snapshot\F(send_info))): ra repeatedly takes
pictures (service rake_snapshot, action 4) and sends them using
the communication network (service send_info, action 5).

Fig. 2: MAPmAKER usage scenario.

MAPmMAKER shows a graphical interface as the one pre-
sented in Fig. 2 when executed. Fig. 2 is a screenshot of
MAPmAKER’s performance where we changed the size of
some numbers, added plans, and labeled some cells. The grid
represents the environment in which the robots move. Each
cell represents a location of the environment and has a number
associated. Robots are represented by colored squares. Actions
are used to encode movements and skills of the robots (i.e.
labeled actions from | to 5). A robot cannot move between
adjacent cells if they are separated by thick bordered lines.
Whenever it is unclear if a robot can move between adjacent
cells, these cells are separated by a red border. Whenever
a service can be provided by a robot in a cell, the cell
is labeled with the associated action and the color of the
corresponding robot (a question mark precedes the action
number if the provision is unclear). Synchronization capabilities
are represented by a black cross (which becomes green if is
unclear whether two robots can synchronize in a cell).

Assume that the robots ry, 2, and r3 have the local missions
defined in Fig. 2. In a hospital environment, r; is a dexterous
mobile manipulator that aims at helping 72, a heavy-duty
mobile manipulator, with grasping certain medical supplies.
It means that r; and ro must meet in cells where service
fetch_supplies is provided. Once these supplies are grasped, ro
brings them to the surgery table in the middle of the room. In
the meanwhile, r3 takes pictures of the table and sends them

using the communication network.

The same figure also shows different plans that can be
performed by the robots, accomplishing a number of actions
in a periodic fashion. Every robot can perform different plans,
but only some of them are showed to improve readability. P1’
represents a possible plan where true evidence was detected
by the robot (in actions execution, service provisioning, and
meeting capabilities), reaching the cell to accomplish service
help_grasping (action 1) and meet with r. P2 is a definitive
plan, where r, must synchronize with 7; to accomplish
service fetch_supplies. P2’ represents a possible plan (same
uncertainty seen in P1°) that performs similar actions to P2 but
in another room. P3’ represents a possible path where robot 73
accomplishes action 4 in cell 11 and action 5 in cell 6. Finally,
P3 is a definitive plan, which substitutes the location of service
take_snapshot from cell 11 to cell 39.

IV. EVALUATION

To evaluate MAPmAKER we formulate a research question,
RQ: Is MAPmAKER able to perform planning in partially
known environments? To answer it, we had considered the
simulated scenario introduced in Sec. III. We created a partial
robot application starting from the models of the robots and
their environment. We then introduced uncertainty in the three
considered dimensions introduced in Sec. II. Examples of such
uncertainties are whether the system has certain knowledge
about the transition through doors (e.g., the one between cells 37
and 38 in Fig. 2) or about the provision of services (e.g., deliver
at cells 24 and 26). We introduced uncertainty through a random
process and created three different scenario configurations
based on the same environment. We also randomized the initial
position of each robot, creating three different sets of initial
configurations. The nine experiments we performed to validate
MAPmMAKER consist of the nine possible combinations of the
scenario and initial configurations.

The results show that the decentralized algorithm actually
helps in improving performances and that MAPmAKER is
able to compute plans in situations where traditional plan-
ners cannot. MAPmMAKER also improves the performance
in terms of plan length in various situations. In the folder
ResultsPaperRoSE of our repository [25] we provide a
set of videos showing the performance of MAPmAKER in these
experiments. We also provide results, containing computation
time, plan length, false and true evidences found by the robots,
and ratio between the definitive and possible plans in terms
of computation time and plan length. The evaluation of the
underlying algorithms might be found in [4].

V. CONCLUSION

We presented MAPmMAKER, a decentralized planner for par-
tially known environments. The MAPmAKER implementation
relies on a naive implementation of a planner that comes from
literature and has been customized within the proposing frame-
work. Our evaluation showed how MAPmAKER improves
planning in cases in which partial information is present.

As future work we plan to experiment in complex scenarios
and with real robots. We will make use of more efficient
planners to speed up the computation. Other work will include
the study of appropriate policies to select between definitive
and possible plans.

ACKNOWLEDGEMENTS

This work was supported by the EU H2020 Research and
Innovation Programme under GA No. 731869 (Co4Robots).

REFERENCES

[1] M. M. Quottrup, T. Bak, and R. Zamanabadi, “Multi-robot planning: A
timed automata approach,” in ICRA, vol. 5. IEEE, 2004.

[2] J. Tumova and D. V. Dimarogonas, “Multi-agent planning under local
LTL specifications and event-based synchronization,” Automatica, 2016.

[3] J.-C. Latombe, Robot motion planning. Springer, 2012, vol. 124.

[4] C. Menghi, S. Garcia, P. Pelliccione, and J. Tumova, “Multi-robot LTL
planning under uncertainty,” in FM2018. Springer, 2018, pp. 399-417.

[5] M. Guo and D. Dimarogonas, “Multi-agent plan reconfiguration under
local LTL specifications,” The Int. Journal of Robotics Research, 2015.

[6] C. Menghi, C. Tsigkanos, T. Berger, P. Pelliccione, and C. Ghezzi,

“Property specification patterns for robotic missions,” in Proc. of the

40th International Conference on Software Engineering: Companion

Proceeedings, ser. ICSE *18. ACM, 2018, pp. 434-435.

M. Kloetzer, X. C. Ding, and C. Belta, “Multi-robot deployment from

LTL specifications with reduced communication,” in CDC. IEEE, 2011.

[8] P. Schillinger, M. Biirger, and D. Dimarogonas, “Decomposition of finite

LTL specifications for efficient multi-agent planning,” in DARS, 2016.

[9] C. Menghi, P. Spoletini, and C. Ghezzi, “Integrating goal model analysis

with iterative design,” in REFSQ. Springer, 2017.

, “COVER: Change-based goal verifier and reasoner,” in REFSQ
Workshops, 2017.

[11] E. Letier, J. Kramer, J. Magee, and S. Uchitel, “Deriving event-based
transition systems from goal-oriented requirements models,” Automated
Software Engineering, vol. 15, no. 2, 2008.

[12] S. Uchitel, G. Brunet, and M. Chechik, “Synthesis of partial behavior
models from properties and scenarios,” TSE, vol. 35, no. 3, 2009.

[13] S. Uchitel, D. Alrajeh, S. Ben-David, V. Braberman, M. Chechik,
G. De Caso, N. D’Ippolito, D. Fischbein, D. Garbervetsky, J. Kramer,
et al., “Supporting incremental behaviour model elaboration,” Computer
Science-Research and Development, vol. 28, no. 4, 2013.

[14] M. Famelis, R. Salay, and M. Chechik, “Partial models: Towards modeling
and reasoning with uncertainty,” in ICSE, 2012.

[15] A. Albarghouthi, A. Gurfinkel, and M. Chechik, “From under-
approximations to over-approximations and back,” in TACAS, 2012.

[16] A. Bernasconi, C. Menghi, P. Spoletini, L. D. Zuck, and C. Ghezzi, “From
model checking to a temporal proof for partial models,” in Software
Engineering and Formal Methods. Springer, 2017.

[17] C. Menghi, P. Spoletini, and C. Ghezzi, “Dealing with incompleteness
in automata-based model checking,” in Formal Methods, 2016.

[18] G. Bruns and P. Godefroid, “Model checking partial state spaces with
3-valued temporal logics,” in CAV, 1999.

[19] M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel, “Multi-
valued symbolic model-checking,” ACM TOSEM, 2004.

[20] A. G. Cunningham, E. Galceran, R. M. Eustice, and E. Olson, “Mpdm:
Multipolicy decision-making in dynamic, uncertain environments for
autonomous driving,” in JCRA, 2015.

[21] M. Lahijanian, M. Maly, D. Fried, L. Kavraki, H. Kress-Gazit, and
M. Vardi, “Iterative temporal planning in uncertain environments with
partial satisfaction guarantees,” IEEE Transactions on Robotics, 2016.

[22] N.Roy, G. Gordon, and S. Thrun, “Planning under uncertainty for reliable
health care robotics,” in Field and Service Robotics. Springer, 2006.

[23] N. E. Du Toit and J. W. Burdick, “Robot motion planning in dynamic,
uncertain environments,” /IEEE Transactions on Robotics, 2012.

[24] J. F. Diaz, A. Stoytchev, and R. C. Arkin, “Exploring unknown structured
environments.” in FLAIRS Conference. AAAI Press, 2001.

[25] Repository, https://github.com/claudiomenghi/MAPmAKER/, 2017.

[26] D. M. Berry, B. H. Cheng, and J. Zhang, “The four levels of requirements
engineering for and in dynamic adaptive systems,” in REFSQ, 2005, p. 5.

[27] MATLAB, https://mathworks.com/products/matlab.html, 2017.

17

—

[10]

