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Abstract—Robot applications are being increasingly used in
real life to help humans performing dangerous, heavy, and/or
monotonous tasks. They usually rely on planners that given a
robot or a team of robots compute plans that specify how the
robot(s) can fulfill their missions. Current robot applications ask
for planners that make automated planning possible even when
only partial knowledge about the environment in which the robots
are deployed is available. To tackle such challenges we developed
MAPmAKER, which provides a decentralized planning solution
and is able to work in partially known environments. Decentral-
ization is realized by decomposing the robotic team into subteams
based on their missions, and then by running a classical planning
algorithm. Partial knowledge is handled by calling several times
a classical planning algorithm.

Demo video available at: https://youtu.be/TJzC u2yfzQ

I. INTRODUCTION

Robotic applications usually rely on a set of robots that

are used to perform missions. The term mission can refer

to a global mission, i.e., the high-level mission that must be

accomplished by the whole team [1] or a local mission, i.e.,

the mission that should be achieved by a single robot, possibly

by collaborating with other robots [2]. Planners are one of

the main ingredients that allow robots to achieve missions.

A planner is a software component that receives as input

a model of the robotic application and computes a set of

actions—a plan—that, if performed, allow the achievement of

a desired mission [3]. Recent works in robotics have defined

robot applications using finite transition systems and some of

them define their local missions as a Linear-time Temporal

Logic (LTL) property (e.g., [2], [4]–[6]). Current robotic

applications require planners to address two main challenges:

1) the planning algorithm should work when (only) partial

knowledge about the system—including the robots and their

working environment—is present; 2) the planning problem

should be solved by decentralized algorithms that help to

reduce the planning overhead.

Several works studied centralized planners that are able

to manage teams of robots that collaborate to achieve a

certain goal (a global mission) [1], [7]. However, planning

is computationally expensive, especially when the number of

robots within the team increases and they need to collaborate

to fulfill their local missions. For this reason, research interest

had focused on decomposing a global mission into a set of

local missions to be achieved by each robot of the team [2],

[5], [8]. These local missions have been recently exploited

by decentralized planners [2], i.e., planners that instead of

evaluating the global mission over the whole team of robots,

analyze the satisfaction of local missions inside a subset of the

team of robots. In this way, the problem of finding a collective

team behavior is decomposed into sub-problems that avoid the

expensive fully centralized planning. However, the applicability

of these algorithms has never been studied when only partial

knowledge about the system is available.

The role of partial knowledge or uncertainty in software de-

velopment has been strongly studied in literature. Research has

been done on how to consider partial knowledge in requirement

analysis and elicitation [9]–[11], in the development of a model

of the system that satisfies a set of desired properties [12]–

[16], and in checking whether an already designed model

possesses some properties of interest [17]–[19]. However,

most of the existing planners assume that the environment in

which the robots are deployed is known [20]. This assumption

does not usually hold in real-word scenarios [21], where,

for example, the robots navigate in environments affected by

natural disasters, where the movement between locations or

the execution of specific actions may be impossible. While

planners that consider partial information about the environment

in which the robots operate exist (e.g., [22]–[24]), they usually

rely on probabilistic algorithms and are not decentralized.

This work presents MAPmAKER: a Multi-robot plAnner

for PArtially Known EnviRonments. MAPmAKER provides a

decentralized planning solution that works in partially known

environments. Decentralization is realized by decomposing the

robotic team into subteams based on their missions, and then

by running a classical planning algorithm. Partial knowledge

is handled by calling twice a classical planning algorithm.

The theory that supports MAPmAKER including proofs of

correctness, a detailed description of the modelling formalisms,

and the verification procedures can be found in [4]. In this

paper we present the implementation of MAPmAKER, the

components that compound it, the models it uses, and how

it can be used. We also provide a demonstration video to

illustrate such concepts. In this sense, the contribution is more

a proof of concept than a tool ready to be used for real-world

scenarios. MAPmAKER builds upon the planner proposed by

Tumova et al. [2] and is evaluated by analyzing its behavior

on a robot application simulating a hospital environment with







using the communication network.

The same figure also shows different plans that can be

performed by the robots, accomplishing a number of actions

in a periodic fashion. Every robot can perform different plans,

but only some of them are showed to improve readability. P1’

represents a possible plan where true evidence was detected

by the robot (in actions execution, service provisioning, and

meeting capabilities), reaching the cell to accomplish service

help grasping (action 1) and meet with r2. P2 is a definitive

plan, where r2 must synchronize with r1 to accomplish

service fetch supplies. P2’ represents a possible plan (same

uncertainty seen in P1’) that performs similar actions to P2 but

in another room. P3’ represents a possible path where robot r3
accomplishes action 4 in cell 11 and action 5 in cell 6. Finally,

P3 is a definitive plan, which substitutes the location of service

take snapshot from cell 11 to cell 39.

IV. EVALUATION

To evaluate MAPmAKER we formulate a research question,

RQ: Is MAPmAKER able to perform planning in partially

known environments? To answer it, we had considered the

simulated scenario introduced in Sec. III. We created a partial

robot application starting from the models of the robots and

their environment. We then introduced uncertainty in the three

considered dimensions introduced in Sec. II. Examples of such

uncertainties are whether the system has certain knowledge

about the transition through doors (e.g., the one between cells 37

and 38 in Fig. 2) or about the provision of services (e.g., deliver

at cells 24 and 26). We introduced uncertainty through a random

process and created three different scenario configurations

based on the same environment. We also randomized the initial

position of each robot, creating three different sets of initial

configurations. The nine experiments we performed to validate

MAPmAKER consist of the nine possible combinations of the

scenario and initial configurations.

The results show that the decentralized algorithm actually

helps in improving performances and that MAPmAKER is

able to compute plans in situations where traditional plan-

ners cannot. MAPmAKER also improves the performance

in terms of plan length in various situations. In the folder

ResultsPaperRoSE of our repository [25] we provide a

set of videos showing the performance of MAPmAKER in these

experiments. We also provide results, containing computation

time, plan length, false and true evidences found by the robots,

and ratio between the definitive and possible plans in terms

of computation time and plan length. The evaluation of the

underlying algorithms might be found in [4].

V. CONCLUSION

We presented MAPmAKER, a decentralized planner for par-

tially known environments. The MAPmAKER implementation

relies on a naive implementation of a planner that comes from

literature and has been customized within the proposing frame-

work. Our evaluation showed how MAPmAKER improves

planning in cases in which partial information is present.

As future work we plan to experiment in complex scenarios

and with real robots. We will make use of more efficient

planners to speed up the computation. Other work will include

the study of appropriate policies to select between definitive

and possible plans.
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