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Abstract—Without prior knowledge of the environment, a
software agent can learn to achieve a goal using machine learning.
Model-free Reinforcement Learning (RL) can be used to make
the agent explore the environment and learn to achieve its goal
by trial and error. Discovering effective policies to achieve the
goal in a complex environment is a major challenge for RL.
Furthermore, in safety-critical applications, such as robotics, an
unsafe action may cause catastrophic consequences in the agent
or in the environment. In this paper, we present an approach that
uses runtime monitoring to prevent the reinforcement learning
agent to perform “wrong” actions and to exploit prior knowledge
to smartly explore the environment. Each monitor is defined
by a property that we want to enforce to the agent and a
context. The monitors are orchestrated by a meta-monitor that
activates and deactivates them dynamically according to the
context in which the agent is learning. We have evaluated our
approach by training the agent in randomly generated learning
environments. Our results show that our approach blocks the
agent from performing dangerous and safety-critical actions in
all the generated environments. Besides, our approach helps the
agent to achieve its goal faster by providing feedback and shaping
its reward during learning.

I. INTRODUCTION

Artificial intelligence is increasingly being used to solve
problems in many different domains, such as robotics, where
a software agent is trained to act autonomously in an, often,
unknown environment. Reinforcement Learning (RL) [1] algo-
rithms can be used to train a software agent: the agent learns a
policy that maximizes a final reward by trying different actions
on the environment (trial and error) and collecting rewards.

During training, at learning time, the agent can perform
actions that are potentially dangerous to the environment or to
itself. At execution time we cannot be sure that the agent will
always act correctly since it uses probabilistic models to make
decisions. By safe exploration [2] we refer to the problem of
guaranteeing that an agent has to act safely both at learning
and execution time. For example, a cleaning robot should learn

to clean the dirt without breaking other elements in a room,
or without harming the agent itself.

Runtime verification techniques can prevent the agent to
perform catastrophic actions. Safety-critical requirements can
be encoded in one or more monitors and enforced at learning
and execution time when the monitor detects that the agent is
about to violate them. On one hand we have to convey goals to
the RL agent through the reward function, on the other hand
we want the agent to respect some important properties that
include safety-critical requirements, which we call invariants,
at all time. The work in [3] goes in the direction of conveying
the goals by building more structured reward functions, by
modelling and verifying them at design-time. In this paper,
we address the problem of preserving the invariants of a
RL agent at learning and execution time with an approach
called WISEML. In [4] we have presented a preliminary
idea of WISEML, a method that combines model-free RL
with runtime monitoring and enforcement, without providing
a concrete solution. In this paper, we further develop the idea,
provide a concrete solution, and largely validate it.

WISEML is agnostic with respect to the RL algorithms used
to train the agent. We refer to WISEML as a safety envelope:
it wraps the RL agent and prevents the execution of actions
that would violate its invariants. The WISEML enhanced RL
agent, which we call WISEML agent, analyses every action
that the RL agent proposes and those that do not violate the
specified invariants are sent to execution.

We express the invariants via the use of specification
patterns, which based on the work in [5], [6], we use 4
patterns: absence, universally, precedence, and response. Once
invariants are expressed in terms of patterns, then they can
be automatically translated in Linear-time Temporal Logic
(LTL) [7] or other logics thanks to the mappings provided
in [5], [6]. We implement each invariant the RL agent has
to obey with a monitor. We introduce also a concept of



context that is similar to the concept of scope present in
the specification patterns proposed by Dwyer et al. [5]. Each
pattern has a scope, which defines in which part of the
execution the pattern must hold. In WISEML we have a
meta-monitor that dynamically activates and deactivates the
individual monitors according to their context.

Blocking unsafe actions will prevent the agent from dam-
aging the environment or itself. However, the agent can also
learn what caused the violation in order to improve its policy
in the future. The safety envelope includes a reward shaping
component that influences the rewards received by the agent
at runtime. This component penalizes the agent for attempting
to violate specified invariants since the RL agent performs
its decisions based on probabilistic models we can never be
sure that the agent will never perform harmful actions during
execution time. For this reason the safety-envelope is active
also during execution time. However, in the current version,
we have used WISEML only at learning time. In the future,
we will also investigate and experiment during execution time.

The approach has been evaluated extending the gym-
minigrid platform [8] with our environments and the WISEML
safety envelope. We have evaluated the RL agent in 150
randomly generated environments of different sizes, each
executed 10 times with the presence of WISEML and 10 times
without. Our results show that WISEML correctly enforces the
invariants in all the simulated scenarios. Furthermore, thanks
to the reward shaping feature, the agent learns much faster
with the presence of WISEML. In fact, our experiments show
that WISEML blocked violations 100% of the times while
helping the agent converging up to 55% faster with respect to
the learning performed without WISEML.

Summarizing, the main contributions of this paper are:

• WISEML, a framework that uses runtime monitoring to
prevent wrong behaviours of an RL agent and to convey
prior knowledge of the environment to the agent while it
is exploring. The approach is completely independent of
the RL algorithm chosen to train the agent.

• WISEML contributes shaping the rewards by using in-
variant violation as punishments for the RL agent.

• To facilitate the specification of invariants we enable the
users to specify them via the use of specification patterns.

• An evaluation conducted on randomly generated envi-
ronments; the agent has only partial-observability of the
underlying state of the environment.

The paper is structured as follows. Section II gives an
overview of the specification patterns, the reinforcement learn-
ing algorithm, and the runtime monitor techniques. Section III
survey related works. Section IV presents our approach. Sec-
tion V presents the case study performed on a gridworld
environment, explains how the evaluation has been conducted
and introduces the results analysed from the collected data.
Finally in Section VII we discuss our results and future work.

II. BACKGROUND

A. Specification patterns

Capturing temporal properties in a concise and correct way
is a major challenge [9], [10]. Syntactic correctness can easily
be ensured through standard language processing techniques.
However, guaranteeing that a property matches a software
engineer’s intuition is much harder.

Several lightweight specification languages have been pro-
posed in the last years [10]–[12]. A different approach has
been proposed by Dwyer et al. [5], which proposed qual-
itative property specification patterns in the late nineties.
They analyzed a set of 555 specifications from at least 35
different sources in order to define a catalogue of eight
qualitative specification patterns1. These specification patterns
are organized in two major groups: occurrence patterns and
order patterns. Occurrence patterns focus on a single event
(or state) during system execution (e.g., absence or existence
of an event). Order patterns capture relations of multiple
events can emerge during system execution (e.g., response or
precedence). Specification patterns are automatically translated
to temporal logics and query languages, e.g., LTL and CTL [5].

Qualitative specification patterns have been extended to ex-
press real-time properties and the result is a catalogue of real-
time specification patterns [13]. They have been also extended
to express probabilistic quality requirements (e.g., reliability,
availability, and performance requirements) and the resulting
catalogue is known as probabilistic specification patterns [14].
Finally, the work in [6] presents a unified catalogue that
collects the existing specification patterns and combines them
together with 40 newly identified or extended patterns.

B. Reinforcement learning

In reinforcement learning [15] a software agent collects
observations from the environment and performs actions. Each
observation represents a state of the environment and as the
agent moves from one state to another it collects a numerical
reward. The goal of the agent is to maximize the reward
collected along the way. The environment can be formally
described as a Markov Decision Process (MDP) [16]. An
MDP is a 5-tuple 〈S,A, T ,R, γ〉. At each timestep t the agent
interacts with the MDP by observing a state st ∈ S and by
choosing an action at ∈ A. The environment in response will
transition to the next state st+1 with probability T (st, at) and
give a reward rt ∼ R(st, at). The goal of the agent is to
maximize the return G =

∑∞
t=0 γ

trt+1, which is the sum of
all the discounted rewards, where γ ∈ [0, 1] is known as the
discount factor. The value of a state V (s) represents how good
is for the agent to be in the state s. Formally, it defines the
expected sum of rewards from state s.

The agent will learn a policy or value function used to
estimate the action to perform given a state of the environment.
It does not learn a model of the environment and so it can
not explicitly predict the effect of its action. Instead, it needs
to gather actual experience by exploring the environment,

1http://patterns.projects.cis.ksu.edu/



which can make the exploration process dangerous. As the
agent moves to a real-world environment, it has to respect
some safety constraints. An action that violates some safety
constraint can cause catastrophic consequences in both the
agent and the environment.

C. Runtime verification

Runtime verification (RV) [17], [18] is a technique based
on monitoring software executions. It detects violations of
properties, occurring while the monitored program is running,
eventually providing the possibility of reacting to the incorrect
behaviour of the program whenever an error is detected.

Properties verified with RV are specified using any of the
following approaches: (i) annotating the source code of the
program under scrutiny with assertions [19]; (ii) using a high-
level specification language [20]; or (iii) using an automaton-
based specification language [21]–[23].

One way to verify properties at runtime is through the use
of monitors. A monitor is a piece of software that runs in
parallel to the program under scrutiny, controlling that the
execution of the latter does not violate any of the properties. In
addition, monitors may create a log file where they add entries
reflecting the verdict obtained when a property is verified.
In general, monitors are automatically generated from the
annotated/specified properties [24], [25].

We will here consider the possibility of monitoring the exe-
cution of a program for different purposes. We may distinguish
three different “kinds” of monitoring: (i) proper monitoring,
where the monitor collects data, eventually performs simple
side-effect free computations (e.g., calculate an average during
a specific amount of time), sending the data to another device
or monitor; (ii) runtime verification is concerned with verifi-
cation of one or more properties about the expected behaviour
of the system under monitoring; (iii) runtime enforcement is
performed by monitors that carry the code to be executed in
the monitored system, send specific commands to control the
system, or enforce a given property (as mentioned above) not
allowing the system to act differently from the specification.

Researchers usually talk about RV without distinguishing
between the above three meanings. In this paper we will
instead use the term “monitor” to refer to any of the above
three specific uses, and we will clarify when confusion may
arise (e.g., we might talk about an “enforcer” if we want to
emphasize that the monitor is indeed enforcing a property).

III. RELATED WORK

The literature on safe exploration has highlighted several
directions to address the problem [26]–[28]. Thomas et al. [29]
focus on ensuring safety with a policy improvement algorithm
that provides probabilistic guarantees on the agent policy,
given that the environment can be modelled as an MDP, or
partially observable Markov decision process (POMDP) [15].
Lipton et al. [30] modified the DQN algorithm with the
concept of intrinsic fear that shapes the rewards of the agent
guiding it away from catastrophes. The agent interacts with the

environment through an MDP and the intrinsic fear model is
learned using the data collected from a finite sample of states.

Human Intervention RL (HIRL) is an approach by Saunder
et al. [31] that uses human overseer to avoid catastrophes
in model-free reinforcement learning agents. As the safety-
envelope proposed by our approach WISEML, the human
overseer stands between the agent and the environment and
it can either let the agent’s actions to be applied to the
environment or block them. The decisions taken by the human
are used to train a module, the blocker, via supervised learning.
The main difference with our approach is that they used a
trained model to block potentially dangerous actions at run-
time. We use a hand-coding approach to specifying invariants
at design-time. This comes with the trade-off of having less
flexibility in terms of recognized violations compared with
a supervised learning model, but more assurances in term
of safety (since monitors are not based on machine learning
models, will always block the violation as specified).

The work in [32] expresses the properties that the agent
must satisfy in LTL and produces an MDP, which is the
product of the original MDP and a Limit Deterministic Büchi
Automaton (LDBA) generated from the LTL properties. In this
work one needs to know the complete information about the
environment which is modelled as an MDP with labelled safe
and unsafe states. The agent explores only the safe parts using
Q-learning to learn the optimal policy.

Al-Shedivat et al. [33] focuses on intelligent exploration of
the RL agent on complex environment. They takes advantage
of a hierarchical framework for RL [34] by training a meta-
controller on learning the sequence of known subgoals while
a low-level controller learn how achieve each subgoal.

Our approach builds on several of these ideas. We use
LTL to easily encode prior knowledge into formal rules and
reward shaping as a basic technique to help the agent to reach
the goal. In real-world applications, since it is impractical
or even impossible to precisely and completely model the
environment, the agent partially observes the environment
through its sensors. So in our work, the agent has partial ob-
servability of the environment. The agent is able to understand
the underlying state of the environment by collecting multiple
observations and integrating them over-time. This process
is performed by Long Short-Term Memory (LSTM) [35], a
particular kind of Recurrent Neural Networks [36] used as
main deep learning model of the RL algorithm.

IV. WISEML

WISEML addresses the safe exploration problem of a RL
agent, during and after training, in four main directions:

1) modeling invariants in terms of property specification
patterns [5], [6];

2) monitoring the agent in different contexts as it performs
actions freely in the environment. We enable the defini-
tion of invariants that should be checked and preserved
in specific contexts of the environment. This is realized
through the use of various monitors that are orchestrated
by a meta-monitor.
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Fig. 1: Overall architecture of WISEML

3) enforcing a safe behaviour of the agent when it is about
to violate the invariants;

4) shaping the reward of the agent so it learns to avoid future
bad situations, converging faster to its goal.

Our approach consists of a safety envelope around the agent
so that it is protected from performing dangerous actions for
the environment or itself. Before a violation of any invariant
is about to happen, the monitors stop the unsafe action from
being executed on the environment. The agent still learns from
its mistake as WISEML shapes its reward, meaning that the
final reward coming from the environment is modified to take
into account the blocked violation.

Figure 1 shows the main architecture of WISEML. Both
the agent and the environment are unaware of the presence of
WISEML. In this sense, our approach is agnostic to the RL
algorithm used. The Safety Envelope surrounds the RL agent.
The data between the safety envelope and the environment is
processed by the Perception and Actuation components.

From a high-level perspective, WISEML works as follows.
At first, the environment sends the observations of its current
state to the RL agent. The perception component analyses
raw observations from the environment and converts them
in perceptions, more high-level representations of the world
outside the agent (1). The perceptions are used to model
the invariants in the monitors. The monitoring component
processes the perceptions and the proposed action by the RL
agent. In this phase, the meta-monitor activates the monitors
according to their context and checks the satisfaction of the
monitored invariants. The results of this analysis are sent
to the shaping and enforcing component (3). Each monitor
contributes to computing the overall shaped reward (6) and
the final action sent to the environment (4). This action can
be either the same proposed by the agent (3a) or a safe action
computed by the enforcing component (3b) according to the
state of the monitors and their operational mode. Each monitor
can be configured to be in shaping or enforcing operational
mode. In shaping mode the monitor only influences the reward
given back to the agent; in enforcing mode, besides the reward,
it also affects the action proposed as explained in Section IV-C.

With WISEML we can model each invariant separately as
one monitor to be activated in a specific context. The meta-
monitor will dynamically trigger all the monitors that have the
context matching with the current execution of the agent in the
environment. A context can be a function of the agent’s per-
ceptions, actions or both. It can also indicate that the invariant
holds in every situation, regardless of the context. Different
monitors can be combined in order to model all the invariants
of the agent. For each monitor, the designer can specify the
rewards to be given to the RL agent in case of violation or
compliance with the monitored invariant. WISEML provides
a simple interface where the designer can specify all the
monitors in a user-friendly JSON file. The designer has to
specify a few parameters for each monitor in order to activate
them as follows: (i) monitor-name (ii) monitor-type,
(iii) monitor-context, (iv) monitor-invariant, (v)
monitor-operational-mode, and (vi) rewards.

In the following, we will describe in more detail the main
components of the safety envelope at the core of WISEML:
monitoring, shaping, and enforcing.

A. Monitoring

The monitoring component continuously examines the sta-
tus of the agenxt and of the environment and communicates the
results of its analysis to the shaping and enforcing components.
The analysis is performed by several monitors, one for each
invariant that the agent should respect in a specific context.

Invariants can be expressed as temporal specifications of
constraints and preferences, similarly to when specifying prop-
erties in Linear Time Logic (LTL) [7]. The objective is to
verify that, under specific context, the conditions specified by
the system designer are satisfied by the RL agent. A context
C is a function f(se), while a condition A can be expressed
as a function f(se, sa, ap) where:

• se is the current state of the environment (as perceived
by the agent through the perception component);

• sa is the current state of the agent;
• ap is the action proposed by the agent to be executed on

the environment.
The system designer can specify the context and the condi-

tions using one of the available patterns. In the following,
we describe the patterns supported by WISEML and the
equivalent LTL formula, where A and B are the monitor
conditions, and C is a context condition as described above.
We have chosen the following patterns in order to capture the
occurrences and the order of events and operations that can
occur while the agent is training by exploring the environment:

• Absence: C =⇒ �(!A).
A is never true. If active, this type of monitor verify that
the condition A is false at all times.

• Universally: C =⇒ �(A).
A is always true. If active, the universally monitor ensures
that the condition A is true at each step taken by the agent.

• Precedence: C =⇒ �(!BWA).
Globally, A precedes B. If active, if B is true then the
monitor checks that A has become true in the past.
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Fig. 2: Absence/Universally pattern
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Fig. 3: Precedence/Response pattern

• Response: C =⇒ �(A −→ ♦B).
Globally, B is eventually the response to A. If active,
when A becomes true the monitor checks that B will
become true as well.

Figure 2 shows the monitors associated with the absence
and universally patterns. Whenever a monitor is in an active
state it can check if the invariant is satisfied or violated.
Figure 3 shows the monitors associated with the precedence
and response patterns. For the precedence, the monitor is
triggered by the post-condition and later checks violation of
the pre-condition. For the response, the monitor is triggered
by the pre-condition and later checks violation of the post-
condition. All monitors are reset after the invariants have been
checked. When there is no label in the transition a monitor
maintains the same state.

B. Shaping

Reward shaping is a technique that allows modifying the
rewards given to the agent in some states of the environment so
as to help the RL agent to learn more accurately and converge
to the goal faster. It provides more guidance to the agent as it
explores the environment. However, one has to be careful on
how to modify the rewards because this can lead to unexpected
consequences. For example, if we only reward an agent for
going in the right direction, the agent could learn to go in

circles rather than reach the goal [37]. WISEML utilizes the
rewards defined by the designer in order to shape the reward
received by the agent during learning. Ultimately, the shaping
component will reward the agent for respecting the invariants
defined by the monitors and will punish it for violating them.

C. Enforcing

Monitors can be configured to act as enforcers. In this
case, they block the action proposed by the agent from being
executed in the environment if a violation of the monitored
invariant is about to happen. If the violation is not safety-
critical a monitor can be configured only to shape the reward
in order to help the agent with extra domain knowledge. On
the other hand, if the invariants modelled in a monitor are
safety-critical, the monitor can enforce them by blocking the
dangerous action and executing a safe one. In the current
implementation of WISEML the developer can specify a
particular action to enforce. If no safe-action is specified and a
violation is about to happen the RL agent is asked to produce
a new action that does not cause any violation.

Since several monitors can run in parallel, each modelling
and possibly enforcing different invariants, the enforcing mod-
ule has to issue an action that satisfies all invariants of the
monitors. At each step, when the agent proposes an action,
it is possible that more than one monitor can transition to a
violation state. The monitoring component communicates the
unsafe actions of each monitor to the enforcing component that
executes the actions that the designer has specified to manage
the violation of the invariant.

V. EVALUATION

A. Gridworld Environment

In order to evaluate our approach, we have designed the
WISEML framework and developed an extension of the Min-
imalist Gridworld Environment for OPENAI GYM [8] that
supports the WISEML framework. The agent consists of a
known-working RL implementation [38]. It is based on a
variant of one of the latest RL algorithms developed by Google
Deep Mind: Asynchronous Advantage Actor-Critic method
(A3C) [39]. The algorithm used here is often referred to as
A2C since it is a synchronous version of the A3C [40].

A gridworld environment consists of a two-dimensional grid
of cells. The agent always occupies one cell of the grid facing
one of the four adjacent cells. It can interact only with the
cell it is currently facing or change direction inside its cell. At
each step the agent can choose to perform one of the following
actions: move forward, turn left, turn right, toggle, and wait.
The action toggle can both open/close a door and turn on/off
a light switch.

We have extended the existing grid by introducing new
elements in order to evaluate some safety-critical scenarios
with WISEML. Figure 4 shows some examples of randomly
generated safety-critical environments. The agent is depicted
as a red triangle (top-left corner). The green cell (bottom-right
corner) is the agent goal, in all the environments the agent has
to learn to navigate safely from the initial point of the grid to



(a) An initial configuration. The
light is off and the door is closed.

(b) An intermediate step. The
light is on and the door is opened.

Fig. 4: Examples of randomly generated environments.

the goal. The lighter cells around the agent represent its field
of view, meaning the observations that agent perceives from
the environment. These cells are perceived at each step and
semantically analyzed by the perception component. The blue
cells (randomly positioned in around all the grid) are water
cells, if the agent steps on them it drowns and dies, specifically
the RL algorithm terminates one episode and the agent starts
again from the initial position. There are also more complex
elements such as doors and a light switches (yellow tile with a
red dot in the middle). By turning on the light-switch next to
the door the agent is able to perceive observations in the other
room, otherwise, its observations are altered and it can not see
potential hazards such as the water. Before reaching the goal
cell the agent has to learn to turn on the light by toggling the
switch before entering a new room.

The environment generation randomly places the wall, door,
and n water tiles. The minimum width of each room is two
tiles. The light-switch is always placed next to the door. The
position of the agent and the goal are fixed to ensure that the
agent needs to traverse the entire room to reach the goal. The
algorithm also validates that the generated environment has a
solution by checking that the goal is reachable from the initial
position (e.g., it checks that water cells are not blocking it).

The goal of the agent is to localize the goal position and step
on it. However, when the light is off, due to the assumption
that the sensors need a minimum amount of light to work,
the agent is not able to perceive any observations. Hence, an
implicit sub-goal is to turn on the light on before going back
to the original goal of reaching its final position.

We have modelled the invariants of the RL agent as LTL
properties using the patterns of WISEML. See below a list
of some of the conditions used in the formulation of the
properties. Each condition is triggered by the perception
component of the agent.
Conditions used to detect the context of the agent (function
of the agent’s perceptions). (i) pwt: the agent is near the water,
(ii) pdr: the agent detects a door in front, (iii) pdo: the agent
detects that the door is open, (iv) pdc: the agent detects that
the door is closed, (v) plw: the agent detects light-switch, (vi)
plo: the agent detects that the light is on, (vii), and (viii) plf :
the agent detects that the light is off.

Conditions used to model the monitor invariants of the
agent. These are situations that might trigger the monitor
(functions of the agent perception and of the action proposed
by the agent):

• afwt: the agent moves forward when facing water;
• atgl: the agent is about to toggle a light-switch.

From the above conditions, we have formulated the following
properties, and easily model them as monitors in WISEML:

• (Absence) pwt =⇒ �(!afwt). Always avoid to step on
water.

• (Universally) plw =⇒ �(plo). The light is always on.
• (Precedence) pdr =⇒ �(!afrmWplo). The light should

have been turned on before entering a room.
• (Response) plw =⇒ �(plf −→ ♦atgl). If a light switch

is detected and the light is off. Enforced action: toggle
• (Response) pdr =⇒ �(pdc −→ ♦atgl). If a door is

detected and the door is closed. Enforced action: toggle.
In our experiment each invariant is enforced to the agent. It

is important to highlight that for the response properties, we
implemented the monitor to respond immediately to the pre-
condition. Then the post-condition is enforced to happen in the
next state. This is a valid implementation since we have the
knowledge from the environment that, when the pre-condition
is true, it is always possible to perform immediately the actions
that satisfy the post-condition.

The developer can choose to specify a particular action to
enforce in case of violation or let the agent propose a new
suitable action. It is important to notice that the invariants that
we have modelled are very simple requirements of the agent
and are not related to the task that the agent has to achieve.

B. Evaluation

In order to evaluate WISEML, we have run the experiments
in randomly generated environments of different sizes. Starting
from a configuration file we generate the environment and the
monitors inside WISEML and run the experiments inside a
Docker container.

In each experiment, we have compared the performances
of the RL agent with the safety envelope of WISEML with
another RL agent that uses the exact same RL algorithm
and configurations but it is no wrapped with the WISEML
framework. For the rest of the paper, we will refer to the
WISEML agent as the one with the safety-envelope and as
CLASSICRL agent to the one without.

After modelling the invariants into WISEML, we have col-
lected the results as follows. First we generate a random safety-
critical environment Env of some size N. Then we launch the
training of WISEML agent and later the CLASSICRL agent
from scratch on Env until they converge and repeat the process
for M iterations. Finally, we collect the results of these runs and
we start again the training on a different random environment.

The environment is randomly generated regarding the num-
ber and position of the water tiles, and the position of the
door, light-switch and wall. Regarding the convergence of the
agents, we consider an agent to have terminated the training
when its convergence conditions, described below, are met for



ClassicRL

Fig. 5: Example of one experiment, comparing the conver-
gence with and without WISEML. The Y-axis represents the
reward accumulated at each episode by the RL agent. The
X-axis represents the number of steps.

Size Max. number Convergence (%)
of steps WISEML CLASSICRL

7 490000 96.33 78.00
9 810000 91.33 47.67

11 1210000 80.67 33.00
13 1690000 55.33 9.00
15 2250000 66.00 2.00

TABLE I: Percentage of learning iterations that converged.

Size Faster (%) Catastrophes
WISEML CLASSICRL

7 45.96 0.00 4483.83
9 38.77 0.00 8301.93

11 41.64 0.00 5970.11
13 41.07 0.00 2663.88
15 54.92 0.00 3053.00

TABLE II: Comparison between the learning iterations that
converged.

several consecutive episodes. An episode terminates when the
agent reaches a terminal state, so when it reaches the goal,
it dies (e.g. steps on the water) or it reaches a maximum
number of steps which is proportional to the size of the grid.
The algorithm converges if all the following conditions are
satisfied: (i) the goal is achieved, (ii) the number of steps to
the goal stabilizes, (iii) the value loss is less than 0.01, and
(iv) the mean cumulative reward is positive.

The value loss measures the error between the predicted
value of a state and the updated value after the reward has
been received from the environment.

We have formulated the following research questions:
RQ1 To what extent WISEML can assure the respect of in-

variants on a reinforcement learning agent using runtime
monitoring?

RQ2 Can WISEML help the agent to converge to its goal
faster by combining runtime monitoring with the use of
reward shaping?

To answer the research questions we have modelled the five
invariants mentioned in this section as monitors in WISEML.

In our study, we have defined environments (grids) of sizes
7x7, 9x9, 11x11, 13x13, and 15x15. For each size, we have
generated 30 random gridworld safety environments, and for
each environment, we have performed 10 iterations of the
WISEML and CLASSICRL agent for a total of 3000 runs
of the RL algorithm until the convergence criteria are met,
or the maximum number of steps is reached. Each iteration
has a maximum of size2 ∗ 10000 time-steps. The number of
water tiles was defined as 25% of the free tiles. The agent

Fig. 6: Example of one experiment, showing the number of
deaths accumulated over time. The CLASSICRL agent can
continue to die also after convergence (indicated with the
vertical green line).

receives a positive reward of 10 when it reaches a goal and a
negative reward of -10 for death, -0.1 for violations (only for
the WISEML agent) and -0.005 for each step. The agent view
of the environment is a grid of size 7x7. We have chosen such
coefficient by empirically trying several values and noticing
that the agent converged better with these ones. Generally, the
worst state is the more negative is the reward.

Table I shows the percentage of iterations in which the rein-
forcement learning converged before a predefined maximum
number of steps. Table II shows a comparison between the
WISEML and CLASSICRL agents for the cases in which the
reinforcement learning algorithm converged. The first column
shows the average of the comparison in terms of average time-
steps between the WISEML agent and CLASSICRL agent on
the same random environment. In some environments, it was
not possible to do the comparison because the CLASSICRL
agent never converged for such environment. The second and
third columns show the average number of catastrophes in
each iteration for the WISEML and CLASSICRL agent.

Our experiments show that the WISEML agent converges
from 55% to 96% of the times, while the CLASSICRL agent
only converges between 2% to 78% of the times depending on
the size of the random environment. Moreover, the WISEML
agent is on average faster to converge than the CLASSICRL
agent. Also, the monitors have prevented catastrophic events
to occur (i.e. stepping on the water).

Figure 5 and Figure 6 show an example of two experi-
ments. Figure 5 shows the convergence of WISEML and the
CLASSICRL agents. It represents the total reward (mean and
standard error) accumulated by each agent until convergence,
averaged every 8000 steps. Figure 6 shows the number of
deaths accumulated by the agents over one run; in particular,
we show how the CLASSICRL agent can keep dying also
long after its convergence (indicated with the vertical green
line). Obviously, assuming that the perception layer is perfect,
the WISEML agent never died during all the experiments.
All our results, including some videos, are available in the
link below2 and they are all reproducible by launching the
same experiments via the original code on Github3 or simply
launching them via the Docker image4.

To answer our research questions, our results show that with
WISEML the agent never violates its modelled requirements.

2https://goo.gl/FzgEdo
3https://github.com/pierg/wiseml-patterns
4https://hub.docker.com/r/pmallozzi/wiseml-patterns



Indeed, there is the implicit assumption that the requirements
should be correctly modelled using the specification patterns
and that the perception component is working correctly. Fur-
thermore, thanks to runtime monitoring and reward shaping
the agent will converge faster while avoiding catastrophes.

VI. CONCLUSIONS AND FUTURE WORK

We presented WISEML, an approach that uses runtime
monitoring to prevent a RL agent from performing actions that
can be dangerous to the environment or to itself. We specified
invariants through the use of specification patterns, which are
translated into monitors that block and enforce them. The use
of WISEML during learning time improves also the learning
of the RL agent. Our approach is agnostic with respect to the
chosen RL algorithm and it assumes that the RL agent has
no previous knowledge about the environment. Furthermore
the agent only has a partial-observability of the environment,
making it closer to real-world applications. We developed and
evaluated our approach using one of the latest RL algorithms.
We collected data from randomly generated environments and
showed how the monitors always enforce their invariants while
helping the RL agent to converge to its goal.

As future work, we plan to perform larger experimentation
by using other RL algorithms and more complex environ-
ments. Moreover, we will investigate more systematic ways
of identifying invariants. Finally, we plan to extend our ap-
proach by automatically synthesizing all the monitors from
the invariants that we want to preserve.
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