
Towards Systematic Engineering of
Collaborative Heterogeneous Robotic Systems

Simos Gerasimou, Nicholas Matragkas, Radu Calinescu
Department of Computer Science, University of York, UK

{simos.gerasimou; nicholas.matragkas; radu.calinescu}@york.ac.uk

Abstract—Collaborative heterogeneous robotic systems are dis-
tributed and interconnected multi-robot systems whose members
can have different capabilities and can perform specialised tasks.
Existing engineering processes and tools facilitate the develop-
ment of various robotic aspects including kinematics, sensing and,
architecture, through high-level design and low-level code gener-
ation. Although there are several frameworks and middleware,
providing infrastructure for the development of single-robot and
homogeneous multi-robot applications, there is lack of systematic
methods and tools supporting the engineering of heterogeneous
multi-robot systems and the analysis of collaborative intelligence.
In this paper, we present our vision for a framework that supports
the specification of collaborative heterogeneous robotic systems,
generation of platform-specific code, and efficient exploration and
exercise of collective intelligence algorithms.

Index Terms—software engineering, robotic systems, collective
intelligence, model-driven engineering, domain-specific language

I. INTRODUCTION

Collaborative autonomous robotic systems (CARS) are dis-
tributed and interconnected multi-robot systems typically de-
ployed to perform missions whose complexity and/or cost is
too high for a single robot to accomplish on its own [1]. Exam-
ples of such missions include environmental data collection,
surveillance and reconnaissance, and the discovery of natural
resources. The intrinsic characteristics of these missions, i.e.,
distributed sensing and action, uncertain operating environ-
ment, and the need for endurance and robust behaviour, neces-
sitates the use of CARS instead of single-robot solutions [2].
CARS can successfully undertake such missions through col-
lective intelligence, i.e., sense, learn, share knowledge, reason
and act based on a combined contributed self-awareness from
team members. Thus, using CARS brings additional benefits
including improved performance (missions can be performed
more efficiently through parallelism if they are decomposable),
mission enablement (executing missions beyond the capabil-
ities of individuals, e.g., collective transport) and increased
robustness and reliability through redundancy.

Depending on the capabilities exhibited by CARS members,
the team can be either homogeneous or heterogeneous [2].
These capabilities correspond to properties of individual
robotic team members including operating behaviour, compu-
tational capacity, size, perception abilities, or the type of ter-
rain they can traverse [2]. Accordingly, a homogeneous robotic
team comprises robots with identical capabilities that could be
completely interchangeable (although, their physical structure

might be different). In contrast, heterogeneous robotic teams
include robots whose capabilities are different between other
team members allowing them to perform specialised tasks.

The engineering of heterogeneous multi-robot systems has
several benefits compared to their homogeneous counterparts.
Although homogeneity improves a system’s resiliency due to
redundancy, heterogeneity enables to distribute the services
needed to execute a given mission across team members.
This enables service-based specialization within the team,
thus, eliminating the need to build multiple clones of large
monolithic robots. Given the technical challenges to engineer
robots capable of fulfilling all mission requirements, this
unique characteristic of heterogeneous multi-robot systems
is equally important from an engineering perspective. For
instance, incorporating all necessary mission-specific sensing,
computational and actuator abilities into the closed-loop con-
trol (e.g., MAPE-K [3]) of a state-of-the-art robot could result
in a large, inflexible and expensive robotic team. Heterogeneity
is also crucial from a safety point of view as it reduces the risk
for common hazardous behaviour, and consequently failures,
due to common causes (e.g., a malfunction affecting a core
controller component used in all robotic team members).

Despite the heterogeneity-induced benefits, the engineering
of heterogeneous multi-robot systems remains a challenging
and significantly more complex process when compared to
homogeneous multi-robot systems [4]. Most of recent research
and practice focuses on providing frameworks, middleware
and libraries to support the engineering of single-robot and
homogeneous multi-robot applications, from high-level de-
sign to low-level platform-specific code generation [1], [5].
The lack of methods and frameworks for the systematic
engineering of heterogeneous multi-robot applications limits
the ability to achieve the complexity required for real-world
multi-robot applications [4]. This problem becomes bigger
when heterogeneous robotic team members are developed
using different frameworks and deployed on different robotic
platforms (Figure 1). In this setting, the typical engineering
process is more convoluted as it involves designing, developing
and validating the robotic team from the very beginning and
implementing additional software to facilitate communication
between team members. This is an important limitation of
existing frameworks that increases significantly the effort
required for exploring the tradeoffs between adaptation strate-
gies driven by different collective intelligence algorithms. For
instance, specifying and analysing the behaviour of a CARS



Fig. 1. Comparison between robotic platform and robot capabilities

that includes some robots running on ROS [6] and others on
MOOS requires not only extensive knowledge of the principles
and architecture of those robotic frameworks but also the
development of specialised software components to enable
communication and knowledge sharing between the team.

In this paper, we introduce a framework and its supporting
architecture and implementation artifacts that addresses the
gap in existing research and practice. We derive requirements
of an effective such framework using an application scenario
in Section II, and overview research on CARS in Section III.
Based on those findings, we introduce in Section IV our
framework that supports the specification of collaborative
heterogeneous robotic systems, generation of platform-specific
code, and efficient exploration and exercise of collective
intelligence algorithms.

II. MOTIVATING APPLICATION SCENARIO

We motivate our work using an example application sce-
nario of a heterogeneous multi-robot team deployed to carry
out an air quality data collection task in urban environments.
Undoubtedly, improving air quality is an increasingly im-
portant issue, especially in densely populated areas. National
and international regulatory bodies have made efforts in this
direction by establishing air quality plans and low emission
strategies (e.g., http://jorair.co.uk) to reduce the impact of air
emissions on public health and the wider environment. To this
end, the objective of the robotic team is to monitor a large
area of a city and measure the air quality over a period of
time. Compared to the current practice, which involves having
a limited number of low-cost but imprecise nitrogen dioxide
diffusion tubes mounted at fixed locations across a city, the
robotic team will provide deeper insights and more accurate
and timely identification of heavily polluted areas.

Figure 2 shows the robotic team which comprises a Parallax
Activity Bot, an Arduino Activity Bot, two Turtlebot 3 Burger
robots and a Double 2 telepresence robot. All robots are avail-
able in our lab. Accordingly, the robots differ significantly in
their physical properties and computational abilities, e.g., size,
travelling speed range, power resources, power consumption,
and type of sensors they could be equipped with. In this
scenario, the inexpensive but with considerably lower com-
putational abilities Activity Bots could be equipped with less

Fig. 2. A heterogeneous team of two Activity Bots, two Turtlebot 3 Burger
robots and a Double 2 telepresence robot that could be used for a data
collection task

accurate sensors and deployed in less condensed city areas, in
contrast to the more powerful and more expensive Turtlebots.
The deployment of the Double 2 robot in populated areas
could provide runtime notifications to citizens informing them
about pollution levels in those areas. Alternatively, the Double
2 robot could use its high resolution and 150 degree wide-
angle camera to detect obstacles along the path of its peers
and help them to adapt their path early, thus, reducing the use
of the expensive obstacle avoidance and re-planning strategies.
Furthermore, enhancing each robot with abilities to undertake
the data collection task requires to instantiate its closed-loop
control. Since some robots use different robotic platforms, this
activity involves developing the collective intelligence algo-
rithm of the robotic team in all employed robotic platforms and
additional platform-specific software components to facilitate
communication and knowledge sharing/acquisition.

Considering the air quality monitoring scenario, a frame-
work supporting the engineering of heterogeneous multi-robot
applications should meet the following key requirements:
R1: Definition of heterogeneous multi-robot applications
Supporting the specification of robots with different capabili-
ties enables team members to carry out specialized tasks.
R2: Support applications for multiple robotic platforms
This will reduce the effort for using multiple platform-specific
frameworks to define the characteristic of the robotic team.
R3: Specification of component-based robotic architectures
Since many robotics libraries are component-based, the frame-
work should enable specifying compositional architectures.
R4: Definition of collective intelligence algorithms
The systematic engineering of CARS must support tradeoff
analysis between different collective intelligence algorithms.
R5: Separation of concerns
Low coupling between framework components improves ex-
tensibility and allows easy changes to the team’s specification.
R6: Ease of use
The learning curve should be gentle and the framework should
be easy to use both to software engineers and robotics experts.

III. BRIEF OVERVIEW OF CARS RESEARCH

The design and implementation of software that facili-
tates the engineering of robotic systems has been a long-



standing research strand [2], [7]–[9]. Recent research intro-
duced frameworks, middleware, and code libraries that can
support the development of various robotic application aspects
including communication (e.g. ROS [6]), abstract access to
sensors and actuators (e.g. Player [10]), and robot simulation
(e.g. Gazebo [11]). Beyond this research, which focuses on
prototyping and developing low-level robot functionalities,
several model-based and domain-specific approaches have
been proposed to facilitate system-level design and analysis
Most of these approaches use domain-specific or general-
purpose modelling languages to specify different aspects of a
robot such as kinematics, dynamics, sensing, and architecture,
and employ dedicated code generators to generate low-level
robotic-platform specific code. For a comprehensive survey
on domain-specific languages for robotics, please see [1].

Despite the existing research on robotic prototyping and tool
support for low-level robot development, recent robotics sur-
veys [1], [2], [5] emphasise that limited research exists on pro-
viding tailored tools and techniques for the systematic devel-
opment and maintenance of CARS (especially heterogeneous
robotic teams). An interesting research work on multi-robot
systems is NaoText [12] which introduces a Domain-Specific
Language (DSL) for specifying the collaborative behaviour
of multi-robot systems. Engineers can use NaoText to specify
the different entities of a multi-robot system, their roles, and
how they ate at a high level of abstraction. Although NaoText
permits the specification of different roles in a robotic team,
it does not allow the specification of robot capabilities, thus
limiting its applicability to scenarios involving homogeneous
robotic teams. Following a similar direction, FLYAQ [13] is
a family of DSLs that allows the specification of civilian
missions for multi-robot systems such as scientific research
and environmental protection. Although FLYAQ supports the
specification of behaviours for robotic team members, its
expressive power is limited to low-level single-robot actions
(e.g. start, stop, move to a specific coordinate), and does not
consider the overall coordination of a robotic team. Finally, the
research in [14] introduces the CAStlE language for designing
collective adaptive systems with a focus on robot adaptation.
Although CAStlE supports to some extent the specification of
heterogeneous multi-robot system concepts (e.g., roles), it does
not provide any mechanisms for specifying different robot
capabilities. Moreover, it does not provide any mechanism for
evaluating alternative team compositions for specific tasks.

The lack of systematic CARS engineering methods is ex-
acerbated by the plethora of coordination and collaboration
algorithms [15]. How can engineers choose between different
algorithms that can meet the same functional requirements but
have different implications on non-functional system require-
ments? To this end, CARS engineers must choose between:

• Static algorithms, which provide a coordination plan
before robots start a task [7], versus dynamic algorithms,
which coordinate the robots during the task execution [8].

• Dynamic coordination can be further divided into: ex-
plicit coordination, in which team members use com-
munication mechanisms for their coordination [16], and

implicit coordination, in which robots exchange infor-
mation by observing the behaviour of other robots in the
environment instead of directly exchanging messages [9].

• Multiple functionally-equivalent algorithms for task allo-
cation [5], motion planning [17], and decision making
(centralised [18] and decentralised [19]).

Deciding on which algorithms to use for robot coordination
is not only important for achieving the functional requirements
of the specified tasks, but it can also affect the non-functional
requirements of the robotic team, i.e., safety, reliability, energy
efficiency and performance. However, it is not only the choice
for the collective intelligence algorithms that can affect non-
functional requirements of a CARS. Other factors including
the physical design of the individual robots can affect the
overall cost, ease of development, reliability, etc. Designing
an optimal robot team for a given mission requires significant
analysis and consideration of trade-offs. To the best of our
knowledge, currently there is no systematic process and ded-
icated tool support for performing the required analysis and
for facilitating this kind of decision-making activities.

IV. TOWARDS A HETEROGENEOUS CARS FRAMEWORK

A framework supporting the systematic engineering of
CARS should enable experimentation and tradeoff analysis
from the early stages of the development process. We present
our vision for such a framework and define an architecture
that meets the requirements identified in Section II.

Figure 3 depicts the architecture of the proposed framework.
At its core lies a family of DSLs which enables the specifica-
tion of a CARS at a high-level of abstraction. The first DSL
of this family facilitates the specification of a CARS mission
including mission goals, tasks, and constraints as in [20].

The second language of the DSL family enables the spec-
ification of individual robots which comprise the robot team.
Engineers can use this DSL to specify the robot type (e.g.,
UAV, UUV, USV), its architecture, its internal behaviours, and
its capabilities (e.g. availability of high-resolution cameras or
other bespoke sensors). Accordingly, a CARS is considered as
a hierarchical composition of components which interact with
the environment. Every robot of a team has a set of inputs
and outputs, and can be decomposed into components such as
sensors, actuators, and control units. Individual robots com-
municate with each other via message passing, and the team
coordinates itself by using collective intelligence algorithms.
Finally, engineers can use the collective intelligence DSL to
specify different coordination strategies for the robots of a
team. The novelty of these DSLs will lie in the set of concepts
they will provide. These concepts will enable engineers to
specify: functional and non-functional requirements for the
team of robots; coordination strategies that the robots can
use to accomplish a mission; and traceability between the
requirements, the individual robots, and the team’s strategy.

The proposed DSLs will be supported by a code gen-
eration engine and will target popular robotic frameworks
and their simulation engines such as Gazebo/ROS [11] and



Fig. 3. Envisioned architecture of proposed framework

MOOS/MOOS-IvP [21]. At the crux of the proposed frame-
work is a middleware which will be responsible for handling
the communication between the system’s components, the
coordination of the individual robots, and the monitoring of a
simulation. Since the exact implementation of the middleware
will depend on the composition of a robotic team and the
collective intelligence algorithms used, the middlewaere will
also be generated from the high-level system specification.
Also, a logical interface between the simulation engines and
the middleware will be generated, whose role will be to
interact directly with a running simulation, to exchange data
with it, and to monitor the state of the simulation at any given
point in time, so that it can produce detailed logs (which could
be used for further analysis). Finally, concrete coordination
strategies for the robotic team will be generated from the
specification. These strategies will be used by the robotic team
(via the middleware) to accomplish a mission. The reason that
the coordination strategies are a different component of the
framework, and are not embedded in the simulation code, is
twofold. First, we want to achieve separation of concerns, and
second we want to be able to interchange strategies easily for
experimentation and analysis purposes.

The components of the proposed architecture can be directly
traced back to the requirements identified in Section II. The
family of DSLs will enable the specification of heterogeneous,
component-based multi-robot applications (R1, R3) and the
specification of collective intelligence algorithms (R4). Since
the DSL will use high-level concepts familiar to roboticists,
it will be accessible both to software engineers and robotic
experts (R6). Using transformation technologies (e.g., model-
to-text transformation for code generation) will enable quick
redeployment to different robotic platforms (R2). The frame-
work’s component-based architecture makes it extensible (R5)
and enables experimentation (R4), since components such as
collective intelligence algorithms can be swapped easily.

V. STEPS FORWARD

In this paper, first we identified the lack of software engi-
neering tools and processes to drove the systematic develop-
ment of heterogeneous multi-robot applications, and second
we proposed a framework to address this gap. Currently,

we are designing the family of DSLs using the process
from [22]. The framework implementation will be based on
EMF (https://www.eclipse.org/modeling/emf) and Epsilon [23]

REFERENCES

[1] A. Nordmann, N. Hochgeschwender, D. Wigand, and S. Wrede, “A
survey on domain-specific modeling and languages in robotics,” Journal
of Software Engineering in Robotics, vol. 7, no. 1, pp. 75–99, 2016.

[2] L. E. Parker, “Multiple mobile robot systems,” in Handbook of Robotics.
Springer, 2008, pp. 921–941.

[3] R. De Lemos et al., “Software engineering for self-adaptive systems:
A second research roadmap,” in Software Engineering for Self-Adaptive
Systems II. Springer, 2013, pp. 1–32.

[4] M. Dorigo et al., “A novel concept for the study of heterogeneous
robotic swarms,” IEEE Robotics & Automation Magazine, vol. 1070,
no. 9932/13, 2013.

[5] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of
multi-robot coordination,” International Journal of Advanced Robotic
Systems, vol. 10, no. 12, p. 399, 2013.

[6] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS:an open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, no. 3.2, 2009, p. 5.

[7] E. Todt, G. Rausch, and R. Suárez, “Analysis and classification of
multiple robot coordination methods,” in International Conference on
Robotics and Automation, vol. 4. IEEE, 2000, pp. 3158–3163.

[8] L. Iocchi, D. Nardi, and M. Salerno, “Reactivity and deliberation: a
survey on multi-robot systems,” in Workshop on Balancing Reactivity
and Social Deliberation in Multi-Agent Systems, 2000, pp. 9–32.

[9] E. Pagello et al., “Cooperative behaviors in multi-robot systems through
implicit communication,” Robotics and Autonomous Systems, vol. 29,
no. 1, pp. 65–77, 1999.

[10] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in 11th Interna-
tional Conference on Advanced Robotics, vol. 1, 2003, pp. 317–323.

[11] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an
open-source multi-robot simulator.” inIROS, vol.4, 2004, pp. 2149–2154.

[12] S. Götz et al., “A role-based language for collaborative robot applica-
tions,” in Leveraging Applications of Formal Methods, Verification, and
Validation. Springer, 2012, pp. 1–15.

[13] D. Di Ruscio, I. Malavolta, and P. Pelliccione, “A family of domain-
specificlanguagesfor specifying civilian missions of multi-robot systems,”
in First Workshop on Model-Driven Robot Software Engineering, 2014.

[14] A. Bucchiarone, A. Cicchetti, and M. De Sanctis, “Towards a domain
specific language for engineering collective adaptive systems,” in 2nd
International Workshops on Foundations and Applications of Self*
Systems. IEEE, 2017, pp. 19–26.

[15] F. Rossi, S. Bandyopadhyay, M. Wolf, and M. Pavone, “Review of multi-
agent algorithms for collective behavior: a structural taxonomy,” arXiv
preprint arXiv:1803.05464, 2018.

[16] B. Gerkey and M. J. Mataric, “Are (explicit) multi-robot coordination
and multi-agent coordination really so different,” in AAAI Spring Sym-
posium on Bridging the Multi-agent and Multi-robotic Research Gap,
2004, pp. 1–3.

[17] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning
algorithms from the perspective of autonomous uav guidance,” Journal
of Intelligent and Robotic Systems, vol. 57, no. 1-4, p. 65, 2010.

[18] P. Caloud, W. Choi, J.-C. Latombe, C. Le Pape, and M. Yim, “Indoor
automation with many mobile robots,” in International Conference on
Intelligent Robots and Systems. IEEE, 1990, pp. 67–72.

[19] R. Calinescu, S. Gerasimou, and A. Banks, “Self-adaptive software with
decentralised control loops,” in FASE’15, 2015, pp. 235–251.

[20] S. Gerasimou, R. Calinescu, S. Shevtsov, and D. Weyns, “UNDERSEA:
an exemplar for engineering self-adaptive unmanned underwater vehi-
cles,” in SEAMS’17, 2017, pp. 83–89.

[21] M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard, “Nested
autonomy for unmanned marine vehicles with moos-ivp,” Journal of
Field Robotics, vol. 27, no. 6, pp. 834–875, 2010.

[22] M. Felderer and F. Jeschko, “A process for evidence-based engineering
of domain-specific languages,” in 22nd Intl. Conf. on Evaluation and
Assessment in Software Engineering. ACM, 2018, pp. 169–174.

[23] D. Kolovos, L. Rose, R. Paige, and A. Garcıa-Domınguez, “The epsilon
book,” Structure, vol. 178, pp. 1–10, 2010.


