2019 IEEE/ACM 2nd International Workshop on Robotics Software Engineering (RoSE)

High Level Synthesis of ROS Protocol
Interpretation and Communication Circuit for FPGA

Takeshi Ohkawa
Graduate school of Engineering
Utsunomiya University
Utsunomiya, Japan
ORCID: 0000-0002-6536-6439

Nobuhiko Ogura
Faculty of Informatics
Tokyo City University

Yokohama, Japan

ogura@tcu.ac.jp

Abstract This paper proposes a method with
encapsulating hardware description on ROS nodes for
improving the productivity of robot development. To realize
intellectual robots, we should satisfy constraints involving high
performance, low power consumption, and high energy
efficiency. FPGA (Field Programmable Gate Array) is well-
known to satisfy the constraints. In conventional methods, to
apply FPGA into software description of ordinary ROS system,
we need to describe codes for performing the conversion process
between the abstraction level of the ROS message level and the
abstraction degree of the low FPGA level. Thus, the describing
cost causes to the productivity problem. This proposal
contributes to simplifying the describing part of FPGA in the
conversion process. In this process, we provide a generating
mechanism from C/C++ programs into circuits in High-Level
Synthesis and integrating communication in the ROS protocol.
To evaluate whether the method contributes to productivity, we
compare a C/C++ program in the new method with a
conventional description in HDL. As a result, the size of the new
method was 127 lines, while the conventional was 860 liens.
Therefore, we consider this method contributes to improving
productivity.

Keywords— ROS, FPGA, component, High Level Synthesis,
Design productivity

1. INTRODUCTION

Various hardware accelerators are used to improve
insufficient performance of software processing. Most of the
general processing has already been realized as dedicated
hardware, and dedicated hardware processing is performed in
the computer system without consciousness of software
developers. For example, GPU (Graphics Processing Unit),
which is an LSI(Large Scale Integration) chip dedicated to
graphics processing, performs most of graphics processing for
screen display and basic image processing of a camera input.

Software libraries such as OpenCV, which is for
computer-vision image processing, generally hide these
hardware processes. Therefore, software developers can
benefit from hardware acceleration without explicitly writing
the software description, which is required for acceleration of
processing. On the other hand, it is necessary for dedicated
software processing used for intelligent robots to write use
hardware processing such as GPU. For example, processes
used for intelligent robots include stochastic matching
processing used for SLAM (Simultaneous Localization and
Mapping), Kalman filter, particle filter for sensor input data,
and so on. Processing for these intelligent robots has many
computations and does not reach the required performance,
especially in the case of embedded computing in a robot.

978-1-7281-2249-6/19/$31.00 ©2019 IEEE
DOI 10.1109/RoSE.2019.00014

Yuhei Sugata
Graduate school of Engineering
Utsunomiya University
Utsunomiya, Japan
sugata(@virgo.is.utsunomiya-u.ac.jp

Kanemitsu Ootsu
Graduate school of Engineering
Utsunomiya University
Utsunomiya, Japan
kim@jis.utsunomiya-u.ac.jp

33

Harumi Watanabe
Department of Embedded Software
Tokai University
Tokyo, Japan
harumi@wing.ncc.u-tokai.ac.jp

Takashi Yokota
Graduate school of Engineering
Utsunomiya University
Utsunomiya, Japan
yokota@is.utsunomiya-u.ac.jp

Although there are many processing which needs acceleration,
it is not always possible to prepare dedicated hardware
accelerator. For this reason, robot software is customized so
that it can cope with requests such as thinning out data, low
resolution images and changing algorithms.

Utilization of FPGA , which is an LSI capable of real time
processing with high energy efficiency, is expected to solve
the above issue. Since FPGA is an LSI chip that can realize
arbitrary digital circuits by a software-like program, it is
possible to freely realize parallel processing and memory-
hierarchical architecture specialized for the application. Since
any circuit can be freely programmed, FPGA can be applied
to unprecedented advanced processing such as robot-specific
software processing with high energy efficiency.

Difficulty of using FPGA in robots is that designing high-
performance circuit is time-consuming since it is done at
digital circuit level. In general, application development of
FPGA is done at circuit level by RTL (Register Transfer level)
using HDL (Hardware Description Language). RTL describes
the clock-cycle accurate behavior of all registers which work
in parallel so that each line of source code works in parallel. It
is good to describe circuit in detail, however, it is humble to
describe sequential behavior. So development productivity is
much lower than ordinary software. Recently, HLS (High-
Level Synthesis) [1] has become popular for generating HDL
from software language such as C/C++. The major benefit of
HLS is program comprehension. For example, an image
processing library [2] in C language for HLS is available,
which is easy to understand and reuse. However, a high-
performance circuit using HLS still needs expertise
knowledge of FPGA [3].

On the other hand, in a wide field of robot engineering, it
is not realistic to grasp many necessary technologies for all the
specialized fields in robot development. We have proposed
ROS-compliant FPGA component [4] in order to introduce
any FPGA processing circuit easily to robot systems. ROS
(Robot Operating System) [15] is a kind of software platform
which supports component-oriented development. By using
ROS-compliant FPGA component, FPGA can be easily
introduced to robots so reusability of FPGA circuits can be
improved. We also proposed an automated design tool [12]
which generates the communication path between ROS
message and circuit as software. However, it is still a problem
that its communication performance is very low because of
embedded processor, which needs less power but low in
processing performance. Therefore, the development of ROS
protocol interpretation and communication circuit for high-
performance data communication is expected to be automated.

The contributions of this paper are:

® Description of the detailed ROS-compliant FPGA
component co-operated by software and hardware

® Proposal of a novel design flow by HLS (High-Level
Synthesis) with better program comprehension

® Feasibility study and evaluation in source lines of

code to show improvement in design productivity

II. DEVELOPMENT OF ROS-COMPLIANT FPGA COMPONENT

This section describes the development of ROS-compliant
FPGA component. Expected role of the FPGA is accelerating
an application processing such like computer-vision algorithm,
filter and so on. At the same time, the application processing
on the FPGA must communicate with the outer system, i.e.
ROS software nodes surrounding the application processing.
Therefore, the FPGA component must have two interfaces in
addition to the “Application processing”, that are “Interface
for input” and “Interface for output” as shown in Figure 1.

“Interface for input” must have the following functions:

® Input a message from a topic subscribed in advance

® Interpret the message in ROS protocol and
extract/marshal data for the application processing

® Send the marshaled data to the application processing

Also, “Interface for output” must have the following:

® Receive result from the application processing

® Generate a message in ROS protocol from the result
of the application processing

® Publish the result to a topic advertised in advance

“Application processing” can be developed in various
ways for each application domain. The examples for computer
vision and machine learning application are xfOpenCV [5] in
reVISION Platforms from Xilinx Inc., OpenVINO [6] Toolkit
from Intel, and so on. For other domains, OpenCL [7],
VivadoHLS [8], and any other HLS tools can be a generic
solution for computing tasks like scientific computations [7],
and complex applications including dynamic data structure [8].

Figure 1 Structure of ROS-compliant FPGA component

‘ Publisher ‘ ‘ Master H Subscriber‘
e Y

Querytrans. 7
(HTTP/XML-RPC)

Data comm. 4
(TCPROS)

Figure 2 Sequence of ROS message communication

34

HTTP/ e ROS node Y
XML-RPC
External @ External
Publisher / \ Subscriber
(/Subscriber\‘: "l"Puinsher\\\ ¢
NOSW S Losw
Software
; FPGA N Hardware
TCPROS Subscriber Application Publisher
HW PP HW |

e

Figure 3 Co-operation of software and hardware to realize
ROS node by separating XML-RPC and TCPROS protocol

This paper, though, focus on how to develop the two
interfaces which (1) communicate with other ROS node, (2)
convert data between ROS protocol message and application
processing in FPGA, and (3) send/receive data to/from
application circuit. The three STEPs are all done in FPGA.

STEP 1) Communication with other ROS node

The communication sequence to work as a publisher or a
subscriber in ROS system is show in Figure 2. In the
beginning, Publisher registers its topic information to Master.
This corresponds to advertiseTopic() of ROS-API call. After
this, Subscriber can query for the registered topic name by
subscribe() ROS-API call. Master works as a name service of
topic in ROS system like this. These query transactions are
done in HTTP/XML-RPC protocol [13]. After the query
transactions, message communication of application data
starts in TCPROS protocol. In our previous report [9], a
method of accelerating ROS message communication for
application data is proposed and exhibited by using FPGA
hardwired TCP/IP stack based on the architecture here.

Figure 3 illustrates how the FPGA works as ROS node. The
query transactions in XML-RPC are done by software on
microprocessor since the transactions do not need high-speed
communication. Instead, the data communication in TCPROS
protocol is done in FPGA at high-performance.

STEP 2) Conversion of data between ROS and FPGA

Message in TCPROS protocol is almost raw binary data of
application [15]. Therefore, the conversion of data is only
extraction and marshalling processing. Extraction process
includes interpretation of ROS message based on the
ROSTCP protocol, which has structured data fields with
variable length array. Marshalling process is necessary if the
data format used the circuit of the application processing is
different from ROS message.

STEP 3) Send/Receive data to/from application circuit

Communication between the Interface circuit and
Application processing has several choices. The most simple
one is direct connection using register, however, it has
problem if the coming data overwrites the register. Therefore,
inserting FIFO buffer is a realistic approach. Anyway,
connection between circuit modules are not tough work.

III. PROPOSED DESIGN FLOW USING HIGH LEVEL SYNTHESIS

The development of data conversion/communication
processing is an error prone task. In addition, the development
TAT (Turn-Around Time) of FPGA is much longer than
ordinary software development in general. Therefore, it is
necessary to reduce iterations of error and try in the

development flow for the ROS/FPGA data conversion
processing. In this section we propose a novel design flow of
ROS/FPGA data conversion processing using High-Level
Synthesis to ease the development.

In our original work [4], the communication was the
development bottleneck since the Interface was implemented
in software. Our previous work [9], the three STEPs in the
FPGA can be connected through hardwired, however, the
development was done by describing circuits in HDL
(Hardware Description Language). In this paper, we propose
a design flow in which all the three STEPs are described in
C/C++ language and use High-Level-Synthesis (HLS) to
synthesize circuit for the three STEPs.

The parameters of Publisher and Subscriber circuit used
for realizing ROS node are different depending on application.
That is, the type of ROS messages used is dependent on
application. Another parameters are information about node
and topic, for example, topic name, node name, network
information, and so on. Therefore, the circuit used in the ROS
node must be generated for each application. Even a small
parameter change, conventional HDL design need long time
for compilation and verification. Therefore, automating the
process is important to avoid re-spin of the
design/implementation process. Therefore, a design flow is
necessary to generate ROS node which is capable of
communicate with other ROS nodes and utilized high-
performance and highly effective FPGA processing.

We propose a design flow is illustrated in Figure 4. The
developer of ROS-compliant FPGA component prepares (a)
ROS message definition and (b) ROS node configuration. The
ROS message definition (a) is a commonly used style in ROS
system development. It defines application specific custom
message type. Most of popular message types used in robotic
software are pre-defined and distributed by official ROS
releases, for example, sensor msgs for various sensor data
including camera image and IMU. The ROS node config (b)
is used to indicate A generator is used to specify topic name,
node name, network information to communicate with other
publishers/subscribers/master in the ROS system. Application
(c) is provided as C/C++ for HLS. After generator, C/C++
descriptions of subscriber (d) and publisher (e) are obtained.
Finally, HLS tool synthesize circuits (f) for FPGA to work as
ROS node.

(in C/C++ for HLS)
(d)

(a) ROS

Message
Definition
Generator

(b) ROS (e) HLS
node » Publisher Tool
config. Description (C/C++
To
HDL

(in C/C++ for HLS)

(c) Application

Figure 4 Proposed design flow of generating ROS-compliant
FPGA component with HLS tool

IV. FEASIBILITY STUDY AND EVALUATION

In the proposed development flow, a generator of
Subscriber and Publisher description in C/C++ for HLS is
necessary. Before making the generator, it is necessary to
understand the description for Subscriber and Publisher well.

35

To evaluate the feasibility of the proposed design flow, we
have implemented ROS node with FPGA including
Application, Subscriber and Publisher in C/C++ for HLS. As
an HLS tool, Vivado HLS 2017.2 is used. Application is
Dilate image processing as an example of simple image
processing. The hardware structure and code fragment for the
Application are shown in Figure 5. By using Vivado HLS,
some OpenCV functions, such as cv.:Dilate(), can be
synthesized into hardware. The image_filter() function is
synthesized as hardware, which is described in verilog HDL.
In order to use hls::Dilate() function, type conversion from
AXI STREAM to his::Mat is necessary. AXI STREAM
represents a data stream on AXI4-Stream point-to-point bus
protocol, while Als:: Mat corresponds to cv.::Mat in OpenCV.

Conversion of data between ROS message and hardware
can be described in C/C++ for HLS. The ROS message format
used in the system is sensor_msgs/Image, which is a popular
data type in ROS message, as shown in Figure 6. The code
fragment of the Publisher, which includes ROS
communication procedure, conversion processing between
ROS protocol and FPGA, and communication with
application processing circuit is shown in Figure 7.

image filter

OUTPUT_STREAM
AXivideo2Mat Mat2AXNideo %—»

void image_filter (AXI_STREAM& INPUT_STREAM,
AXI_STREAM& OUTPUT_STREAM)

INPUT_STREAM
—|

{

#pragma HLS INTERFACE axis port=OUTPUT_STREAM

#pragma HLS INTERFACE axis port=INPUT_STREAM
hls:Mat<MAX_HEIGHT, MAX_WIDTH, HLS_8UC3> img_0(rows, cols);
hls:Mat<MAX_HEIGHT, MAX_WIDTH, HLS_8UC3> img_1(rows, cols);

hls::AXIvideo2Mat(INPUT_STREAM, img_0);
his:Dilate(img_0,img_1);
hls:Mat2AXIvideo(img_1, OUTPUT_STREAM);}

Figure 5 Code fragment for Dilate image filter

ROS message
(sensor_msg/Image)
std_msgs/Header header
uint32 height

uint32 width

string encoding

uint8 is_bigendian
uint32 step

uint8[] data

Figure 6 ROS message used in the evaluation system

void fifo2axi (volatile int8_t *din_fifo2axi, AXI_STREAM& IMAGE_STREAM)
{

#pragma HLS INTERFACE axis port=IMAGE_STREAM

#pragma HLS INTERFACE ap_fifo port=din_fifo2axi

[ap_axiu<32,1,1,1> lap;] 1 pixel = 32 bit
int height=480, width=640, 1, J;
int pixel[4]1={0,0,0,0};
for(i=0;i<height;i++){
for(j=0;j <width;j++){ i
pixel[0] = *din_fifo2axi; 8bit Data
pixel[1] = *din_fifo2axi; from FIFO
pixel[2] = *din_fifo2axi; buffer
pixel[3] = *din_fifo2axi; .
lap.data= (0xf000000 &(pixel[3]< <24)) is converted
+(0x00ff0000 &(pixel[2]< <16)) to 32 bit
+(0x0000ff00 &(pixel[1]<<8))
+(0x000000ff & pixel[0]);
if(j ==width-1) lap.last=1; End of line
else lap.last=0;
if(i==0 && j==0) lap.user = 1;
=0; Start
IMAGE_STREAM << lap; of a frame

11
Figure 7 Code fragment for interpreting ROS message

Table 1 Source code lines of FPGA Publisher/Subscriber
implementations by HDL and HLS (C/C++)

Publisher Subscriber Total
HDL (Verilog) 415 445 860
HLS (C/C++) 57 70 127

The fifo2axi() function is synthesized as hardware, too. In
the evaluation system, as TCP/IP packet arrived to the
network interface port, the contents of the packet is pushed to
a FIFO buffer by hardwired TCP/IP stack. The data of FIFO
can be pop-up by reading the pointer variable din_fifo2axi. In
the code fragment, four pixel values are pop-up from FIFO
which has 8-bit width and marshalled into 32-bit width data.
The control behavior such as end-of line and start-of frame can
be described in C/C++ for HLS. The description is much
simpler than writing RTL description in HDL.

The source code lines of the developed FPGA
Publisher/Subscriber implementations are shown in Table 1.
The lines are counted without comments. which was 860 lines
(415 lines for publisher and 445 lines for subscriber), is
described in 127 lines (57 lines for publisher and 70 lines for
subscriber) in C/C++ language by using HLS. This reduction
of description is achieved because C/C++ language can
describe sequential behavior by line-by-line execution, while
HDL need to clock-cycle level description to realize
sequential description.

V. DISCUSSION

Our proposal in this paper is communicating between
software and FPGA through more loosely coupled way than
the above mentioned tightly coupled, i.e. memory mapped
access, coupling. There is a tradeoff between communication
performance and usability, which includes the development,
management and reuse cost. Communication between
software and FPGA was an issue discussed for long time. The
problem of tightly-coupled HW/SW is very long compilation
time and necessity of expertise of FPGA to use FPGA. Our
proposal is an encapsulation of FPGA as ROS node and make
its interface sparse at network level. For many application, the
latency of network level connection is hardly problematic [9].

ROS2 [10], a newer version of ROS, employs DDS (Data
Distribution Service) [11] as a communication middleware. In
DDS system, the Master process is distributed into the
participant nodes. And the query transactions and data
communication are done in RTPS (Real-time Publish-
Subscribe) protocol [14] which uses broadcast/multicast using
UDP/IP instead of TCP/IP for realizing QoS (Quality of
Service) at better communication performance and reducing
processing overhead for low-power embedded processors.
There are many differential points between DDS and ROS,
however, the principle of the communication sequence is
similar. Therefore, it is expected to realize the same
mechanism in ROS2 by developing the query process, too.

VI. CONCLUSION

A design flow of High Level Synthesis (HLS) of ROS
protocol interpretation and communication circuit for FPGA
is proposed. As a result of the feasibility study and evaluation,
the conversion processing between ROS protocol and FPGA
and the communication processing with other ROS nodes is
described in 127 line in C/C++ language by using HLS, while
it was 860 line in the description with the conventional

36

hardware description language (HDL). This reduction of
description is achieved because C/C++ language can describe
sequential behavior by line-by-line execution, while HDL
need to clock-cycle level description to realize sequential
description. The proposed design flow is expected to improve
program comprehension and contribute design productivity of
ROS-compliant FPGA component for robot system.

ACKNOWLEDGMENT

This research and development work was supported by the
MIC/SCOPE #152103014 and JSPS Kakenhi grant
(17K00072). The authors also thank to Xilinx University
Program and Intel University Program.

REFERENCES

Alexandre Cornu, Steven Derrien, Dominique Lavenier. “HLS Tools
for FPGA : faster development with better performances.” Proceeding
of the 7th International Symposium on Applied Reconfigurable
Computing, Feb 2011, Belfast, United Kingdom. 6578, pp.67-78, 2011.

M. A. Oezkan, O. Reiche, F. Hannig and J. Teich, "A Highly Efficient
and Comprehensive Image Processing Library for C++-based High-
Level Synthesis," FSP 2017; Fourth International Workshop on FPGAs
for Software Programmers, Ghent, Belgium, 2017, pp. 1-10.

(1

J. Choi, Ruo Long Lian, S. Brown and J. Anderson, "A unified software
approach to specify pipeline and spatial parallelism in FPGA
hardware," 2016 IEEE 27th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), London, 2016,
pp. 75-82. doi: 10.1109/ASAP.2016.7760775

Takeshi Ohkawa, Kazushi Yamashina, Hitomi Kimura, Kanemitsu
Ootsu, Takashi Yokota, "FPGA Component Technology for Easy
Integration of FPGA into Robot Systems," IEICE Transactions on
Information and Systems, Vol.LE101-D, No.2, pp.363-375, Feb. 2018.

H. Omidian and G. Lemieux. “An Accelerated OpenVX Overlay for
Pure Software Programmers,” 2018 Field Programable Technology
(FPT’18), Dec. 2018, pp. 293-296, DOI 10.1109/FPT.2018.00056

H. Lam and D. Ojika, "Research Opportunities in Heterogeneous
Computing for Machine Learning," 2018 International Conference on
High Performance Computing & Simulation (HPCS), Orleans, 2018,
pp. 559-560. doi: 10.1109/HPCS.2018.00094

Jialiang Zhang and Jing Li. “Improving the Performance of OpenCL-
based FPGA Accelerator for Convolutional Neural Network.” In
Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA '17). ACM, New York, NY,
USA, 2017, pp. 25-34. DOL: https://doi.org/10.1145/3020078.3021698

F. Winterstein, S. Bayliss and G. A. Constantinides, "High-level
synthesis of dynamic data structures: A case study using Vivado HLS,"
2013 International Conference on Field-Programmable Technology
(FPT), Kyoto, 2013, pp. 362-365. doi: 10.1109/FPT.2013.6718388

Yuhei Sugata, Takeshi Ohkawa, Kanemitsu Ootsu, and Takashi
Yokota. 2017. Acceleration of Publish/Subscribe Messaging in ROS-
compliant FPGA Component. In Proceedings of the 8th International
Symposium on Highly Efficient Accelerators and Reconfigurable
Technologies (HEART2017). ACM, New York, NY, USA, Atticle 13,
6 pages. DOL https://doi.org/10.1145/3120895.3120904

Yuya Maruyama, Shinpei Kato, and Takuya Azumi.“Exploring the
performance of ROS2.” In Proceedings of the 13th International
Conference on Embedded Software (EMSOFT '16). ACM, 10 pages.
2016,

DOI: https://doi.org/10.1145/2968478.2968502

G. Pardo-Castellote, "OMG Data-Distribution Service: architectural
overview," 23rd International Conference on Distributed Computing
Systems Workshops, 2003. Proceedings., 2003, pp. 200-206.
doi: 10.1109/ICDCSW.2003.1203555

Takeshi Ohkawa, Kazushi Yamashina, Takuya Matsumoto, Kanemitsu
Ootsu, Takashi Yokota, “Automatic Generation Tool of FPGA
Components for Robots,”, IEICE transactions on Information and
Systems, to appear in the issue of Jun. 2019

(10]

(11]

(12]

[13] http://wiki.ros.org/xmlrpcpp
[14] https://www.omg.org/spec/DDSI-RTPS/
[15] http://wiki.ros.org/

