
Author preprint: RoSE workshop at ICSE 2021

Assumptions and Guarantees for Composable
Models in Papyrus for Robotics

Jabier Martinez, Alejandra Ruiz
Tecnalia, Basque Research and

Technology Alliance (BRTA)
Derio, Spain

{jabier.martinez alejandra.ruiz}@tecnalia.com

Ansgar Radermacher
CEA-List

Massy, France
ansgar.radermacher@cea.fr

Stefano Tonetta
Fondazione Bruno Kessler

Trento, Italy
tonettas@fbk.eu

Abstract—The separation of concerns helps to manage the
intrinsic complexity of defining robotics components, systems and
missions. This separation of concerns is supported by the Rob-
MoSys modelling approach addressing both the modelling needs
of the robotics domain and identifying the involved stakeholders
and required expertise. In this multi-stakeholder context, there
are pressing concerns about non-functional characteristics in-
cluding safety aspects (e.g., collaborative robots, increasing risks
to humans and the environment where robotic systems operate).
It is of special interest to explicitly establish the non-functional
assumptions and guarantees. This assures that the their validity
can be automatically evaluated, in particular during the definition
of a system as a composition of several component definitions. We
present how we extended one of the RobMoSys implementations,
Papyrus for Robotics, for contracts modelling and assertions
validation. Notably this includes the meta-modelling decisions
to allow extensibility for assertion languages.

I. INTRODUCTION

Checking non-functional characteristics of robotic systems
is a challenging task. Besides mission-critical robotic systems,
safety is becoming more challenging as robots are increasingly
performing automated tasks in open and uncertain environ-
ments. Trust needs to be built given the presence of humans
as users of the robotic service, interacting or collaborative
actors, or just as entities of the environment. Robustness and
validation is one of the major concerns of practitioners in the
robotics field [1]. In this work, we aim to mitigate risks by
being able to define and check assumptions and guarantees in
robotic components’ integrations during the design phase.

Some practitioners had embraced modelling tools (e.g.,
UML editors) for the Architectural and Detailed Design [1].
Different development stakeholders can benefit from Model-
Driven Development (MDD) as an approach that allows
robotic system developers to work at higher abstraction levels
than the implementation or specific middleware. Modelling
and working at the robotics knowledge space promotes ef-
ficiency, flexibility and separation of concerns. Apart from
code generation and quality assurance of the final product,
it is important to check certain non-functional properties at
the design phase which can reduce the costs of solving issues
once the system is implemented, deployed and functionally
available.

In this tool paper, we present the P4R Assertions pro-
file and associated functionalities which extend the existing

tool Papyrus for Robotics (P4R)1. This adds functionalities
for contract-based design as a way to develop safety-aware
robotics assets supported by a model-based compositional
design. Our contribution allows component developers and
system builders to make properties and assertions explicit
with the main objective to exchange and, when feasible,
automatically validate assumptions and guarantees. Figure 1
illustrates the separation of these two roles and shows a small
excerpt of P4R functionalities with the added ones in gray.

• Define Ports
• Define Parameters

Component Developer

• Instantiate Components
• Set Parameter Values
• Connect Components’ Ports

System Builder

• Define Properties
• Calculate Properties
• Define Assertions
• Evaluate Assertions
• Define Contracts
• Evaluate Contracts

• Evaluate Components’ Contracts
• Define System Properties
• Calculate System Properties
• Define System Assertions
• Evaluate System Assertions
• Define System Contracts
• Evaluate System Contracts

Assumptions and guarantees 
for the operational context

Assumptions and guarantees 
for the system builder

Fig. 1. Extended functionalities (in gray) provided by the P4R Assertions

Special emphasis was put to implement an integrated,
generic and extensible approach. By generic we mean that
properties, assertions and contracts should be independent
of the expression language. Notably, there is a plethora and
continuous evolution of both modelling query languages and
languages to express logic. By extensible we mean that ways to
ease the editing and automatic evaluation of those expressions
should be provided.

The rest of the paper is structured as follows. Section II
presents background information and Section III presents the
tool. Section IV discusses the tool and mentions related work,
and finally, Section V concludes the paper and outlines future
work.

1https://www.eclipse.org/papyrus/components/robotics/, P4R Assertions
profile is integrated in P4R since v0.8 (June 2020)

1

https://www.eclipse.org/papyrus/components/robotics/


II. BACKGROUND

A. RobMoSys

RobMoSys [2] is an open platform to share models, de-
sign patterns, tool assets and methodological knowledge for
robotic technologies. It fosters a model driven design that
identifies different stakeholders in different tiers. At the highest
level, the eco-system drivers define the composition structures
and language elements. At the Tier-2 level, domain experts
define elements that are relevant for the domain, typically
in form of libraries (e.g., services and skills). The objective
is to obtain reusable definitions that are standardized by
the domain experts. If everyone uses the same definition of
a camera service for instance, components that provide or
require this service become exchangeable. At the Tier-3 level,
ecosystem-users define reusable content, for instance concrete
component definitions or (reusable) behavior models. While
this content is also intended for a possible exchange, its
use is not compulsory, i.e., multiple stakeholders can provide
specific component definitions with different properties. Our
tool extension is built on top of P4R which complies with the
RobMoSys approach.

B. Papyrus for Robotics (P4R)

P4R is a customization for the robotics domain of the open-
source Eclipse-based Papyrus UML model editor. The Unified
Modeling Language (UML) [3] is a graphical modelling
language offering widely known abstractions such as classes
and relationships among these. The customization is based on
the UML concept of a profile which consists of so-called
stereotypes that provide specific semantics to UML meta-
model elements. For instance, the concept of a component-
definition in the robotics domain extends the meta-model
element Class in UML. The Robotics profile also supports a
generic Block-Port-Connector (BPC) language which is the
basis of composability in RobMoSys. This mechanisms is
hidden from the end user who does not need to know UML
and just use the robotics domain-specific language.

P4R supports all Tier-2 and Tier-3 activities; service and
component definition, as well as the creation of a robotics
system from existing components (system assembly). It also
supports the definition of robotic skills and the possibility to
specify high-level robotic tasks via behavior trees (more details
can be found in [4] but it is not the focus of this paper). A
cross-cutting aspect is the specification of assertions which
has been added and it is the focus of the paper. P4R also
supports the code generation for the ROS2 middleware [5].
ROS and ROS2 are widely used in the robotics domain and
offer publish/subscribe as well as service based interactions.
To enable ROS2 developers to start quickly, P4R is shipped
with a library with existing ROS2 service definitions [4].

III. THE P4R ASSERTIONS APPROACH

We present the tool-supported approach introducing the P4R
Assertions profile in Section III-A. Then we provide details of
the extensibility features of our solution in Section III-B, and
then, Section III-C details the currently supported languages.

A. The Assertions profile

Figure 2 presents the P4R Assertions profile and in gray
we show the new stereotypes that we introduced. These
stereotypes are to be contained in component definitions or
systems. A contract has three attributes: its name, and then two
sets of assertions which are the assumptions and guarantees.
An assertion is a UML constraint so it will directly have a
value specification. A Property contains an expression and it
is an extension of the general UML Property element. Finally,
all the new stereotypes are a generalization of Entity from the
Block-Port-Connector (BPC) profile from P4R. This implies
that all elements have a unique ID to facilitate composition.

<<Metaclass>>
Comment

<<Metaclass>>
Constraint

<<Metaclass>>
Property

<<Stereotype>>
Entity

<<Stereotype>>
Contract

<<Stereotype>>
Property

<<Stereotype>>
Assertion

name: String
assumptions: Assertion [*]
guarantees: Assertion [*]

expression: OpaqueExpression

extensions

generalizations

Fig. 2. P4R Assertions profile

B. Extensibility features for expression languages

At the bottom of Figure 3 we illustrate the P4R Assertions
profile and its associated functionalities as a layer built on top
of P4R which is built on top of Papyrus and Eclipse.

Two extension points are defined for extensibility:

Papyrus

Eclipse

Papyrus for Robotics (P4R)

P4R Assertions

org.eclipse.papyrus.robotics.assertions.languages org.eclipse.papyrus.uml.properties.languageEditor

OCL Natural Language Editor

P4R Basic Language Editor

OCL Xtext Editor

AQL

Othello

P4R AQL

P4R OCL

P4R Othello

BodyEditor
IExpressionLanguage
evaluate(context,expression) returns Object
isGlobalEvaluation() returns boolean

P4R OCL Editor AQL Editor P4R AQL Editor

Othello Editor P4R Othello Editor

La
ye

rs
Ex

te
n

si
o

n
 p

o
in

ts
 

&
 in

te
rf

ac
es

Ex
te

n
si

on
s

Fig. 3. Layers and languages extensibility

2



• org.eclipse.papyrus.robotics.assertions.languages: To define
how a result of a language expression is evaluated.

• org.eclipse.papyrus.uml.properties.languageEditor: To asso-
ciate a language name with its editor.
The interface for the language evaluation also requires

to mention if the language is intended to evaluate single
expressions or if the language is to be used for a global
evaluation. Some languages, for example the widely known
Object Constraint Language (OCL) [6] in the MDD field, can
evaluate the result from a single expressions. In case of other
languages, the aggregation of all the expressions can be used to
evaluate whether an assertion is satisfied or not. These global
languages are usually intended to check the consistency of a
set of assertions (e.g., model checkers).

C. Currently supported languages

We have implemented extensions for three languages allow-
ing a high expressive power in the definition of assertions.
• OCL [6]: A widely-used OMG standard for defining expres-

sions (e.g., queries, navigation) using the model structure.
• AQL (Acceleo Query Language) [7]: An alternative to OCL

with a different syntax. This is convenient for users that are
more familiar or prefer AQL instead of OCL.

• Othello [8]: A textual format to express linear-time tem-
poral logic formulas, extended with metric operators, as
supported by the OCRA tool (Othello Contracts Refinement
Analysis) [9]. OCRA is used in P4R as backend to evaluate
the expressions. The P4R system model is translated to an
OCRA System Specification (OSS) that is used to evaluate
the expressions in the Othello language. OCRA internally
uses the SMT-based model checker nuXmv [10] to analyze
the temporal formulas. It also checks and detects if there is
circularity in the assume-guarantee reasoning; in that case,
it provides a counterexample to the refinement. Contrary
to OCL and AQL which are open-source Java libraries,
OCRA is publicly distributed as an executable file. Thus, the
executable file path must be defined in the tool preferences
and we successfully tested our integration in both Windows
and Linux.

• P4R OCL, P4R AQL, and P4R Othello: P4R-specific
helpers to simplify the usage of the previous languages has
been developed. The user can directly refer to parameter
names of the components and Property names to access
their values (and port names in Othello). This is convenient
as the access to a default value is shorter, e.g. instead
of using the OCL expression self.ownedAttribute →

select(oclIsTypeOf(UML::Property) and name=’weight’) →

first().default to access the default value of a property
named “weight”, we only use weight in P4R OCL. The
OCL expression also has the problem that we might want
to use the default value in the context of a component
definition, but the modified value (if any) in the context
of a component instance. In the P4R extended language,
this is done automatically: if the language is used in a
component definition, the parameter will be evaluated
against its default value, but if it is evaluated through a

component instance, the actual value (if set) will be used
instead of the default one. In a System context, parameters
and properties of component instances must be accessed
through its qualified name (e.g., comp1.myProperty).
The P4R language, as a current known limitation, cannot
have models with parameters or properties with the same
name (i.e., only the first one will be returned). Also, it is
not checked if there are cycles in the definition of derived
values.
Regarding the expressions editor for the different languages,

Papyrus contains an extensible approach to provide editors
for expressions. An OCL Xtext editor was already available
in Papyrus. For the others, we developed basic support for
syntax highlighting and auto-completion, but nothing prevents
to extend it with more fully-fledged Xtext editors. For P4R
languages, syntax highlighting and autocompletion includes
contextual information such as property, parameter and port
names including those of the component instances in the case
of a system model. Thanks to our currently available P4R
language support, future implementations of P4R-enhanced
languages will benefit of a lightweight and simple editor
support framework for prototyping before defining a more
complete editor if needed. For instance, for the P4R Othello
language editor implementation, it was only needed to provide
the list of language keywords. In the future it will be possible
to replace it with the official intermediate layers to interact
with OCRA by third-party applications.

D. Illustrative example

A provider of Camera components wants to add a contract
to the Camera component definition to support future system
integrators in their design activities. The Camera has a pa-
rameter regarding the frames per second (fps) that can be
configured. The possible values are exclusively 15, 30, 45,
60, 90 or 120. Figure 4 shows the component diagram with
its out_image port. First, the component provider can define
a P4R OCL assertion to be used as assumption for the contract
regarding the fixed list of allowed values for the fps:

Set {15, 30, 45, 60, 90, 120} → includes (fps)

For this task, the expression editor is opened. Figure 5 shows
the expression editor where the language can be selected. In
this case, the Figure shows another assertion that we can add as
contract guarantee of the component. The expression indicates,
in the P4R Othello language, that the output port will transmit
the images at the frequency defined by the fps parameter.
Milliseconds is used as time unit in this case.

The Camera component definition, enriched with the con-
tract and its formal assertions, can then be used by the system

Fig. 4. Illustrative Camera component

3



Fig. 5. P4R Othello as selected language and the defined expression

integrators for diverse purposes. If the image is to be used in
a barcode or QR reader, it is probable that the fps parameter
is not important. However, if the frames are consumed by a
component that requires to take decisions in real-time, it is
possible that high values of fps are required. Figure 6 shows
an excerpt of this illustrative example.

Fig. 6. Illustrative system

If the system is a moving vehicle at high speed it can be
safety critical. The RealTimeManager can have its own
contract with an assumption regarding the minimum frequency
that its in_image port expects to receive an image event.
Similarly, the assumption can be expressed as:
always(in_image implies then time_until(in_image)<=1000/90)

This way, the system integrator can launch the validation of
the system contracts refinement and the inconsistency will be
automatically detected by OCRA [9] if the Camera component
instance had an fps parameter value less than 90. Other
assertions and contracts at system level could be added.

IV. DISCUSSION

There is an increasing interest on contract-based design
in other domains with various tool support such as in
CHESS [11], [12], Savona [13], or the mentioned OCRA
itself [9]. Also, in robotics, model-driven approaches for
formal analysis exist (e.g., [14]). With our extension we bring
contract-based design to a specialized modelling framework
for the robotics domain. Although the tool does not support
yet functionalities of OCRA such as the contract verification
on behavioral models or the contract-based safety analysis, it
enables the contract-based analysis of components in the early
phases of the robotic system development. Also, the contracts
specification has been limited to robot’s components, it can
be extended to the analysis of hazards in the human-robot
interaction with temporal logic as in [15].

The extensibility of our tool enables developers to easily
incorporate different expression languages and their associated
evaluators or reasoners. A unified language might not be
feasible with the very diverse and specialized model-checkers
available today. This extensibility will be also desired in future
standardized formats for contract exchange. We consider that
it can also reduce the learning curve in the P4R tool if certain
users are already familiar with a given language.

The tool has been used in the modelling of a real medical
robotic system for rehabilitation: ArmAssist, and an expe-
rience report is available [16]. Assumptions and guarantees
were included at components and system levels with a special
interest on contracts to guarantee the safety of the patient.

V. CONCLUSIONS

We presented an extension of the modelling tool Papyrus for
Robotics to allow the definition and evaluation of contracts at
component and system levels. These functionalities allow, in
earlier phases of the robotic systems development, to reason on
the safe composition of components and the safe deployment
of robots in operational contexts. As further work we aim to
experiment the use of the P4R Assertions profile also at the
robot mission definition level by allowing to add properties,
assertions and contracts in P4R behaviour trees.

ACKNOWLEDGMENT

This work has been funded by RobMoSys (EU H2020
No. 732410) through the SafeCC4Robot technical project.
Thanks to Angel López, Elixabete Ostolaza, Matteo Morelli
and Huascar Espinoza for their help.

REFERENCES

[1] S. Garcı́a, D. Strüber, D. Brugali, T. Berger, and P. Pelliccione, “Robotics
software engineering: A perspective from the service robotics domain,”
ESEC/FSE, 2020.

[2] RobMoSys consortium, “RobMoSys separation of concerns [Online],”
https://robmosys.eu/wiki/general principles:separation of levels and
separation of concerns.

[3] OMG, “Unified Modeling Language,” http://www.omg.org/spec/UML/,
2017.

[4] Papyrus for Robotics team, “Papyrus for Robotics WIKI [Online],” https:
//wiki.eclipse.org/Papyrus/customizations/robotics.

[5] ROS2, “ROS2 documentation [Online],” https://index.ros.org/doc/ros2/.
[6] OMG, “Object Constraint Language,” http://www.omg.org/spec/OCL/,

2014.
[7] Eclipse, “Acceleo Query Language,” https://www.eclipse.org/acceleo/

documentation/.
[8] A. Cimatti, M. Roveri, A. Susi, and S. Tonetta, “Validation of require-

ments for hybrid systems: A formal approach,” ACM Trans. Softw. Eng.
Methodol., vol. 21, no. 4, Feb. 2013.

[9] FBK, “OCRA - Othello Contracts Refinement Analysis,” https://es.fbk.
eu/tools/ocra/.

[10] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuxmv symbolic model
checker,” in Computer Aided Verification, 2014, pp. 334–342.

[11] S. Mazzini, J. Favaro, S. Puri, and L. Baracchi, “Chess: an open source
methodology and toolset for the development of critical systems,” in
EduSymp/OSS4MDE@MoDELS, 2016.

[12] A. Debiasi, F. Ihirwe, P. Pierini, S. Mazzini, and S. Tonetta, “Model-
based Analysis Support for Dependable Complex Systems in CHESS,”
in MODELSWARD. SCITEPRESS, 2021.

[13] M. Grabowski, B. Kaiser, and Y. Bai, “Systematic refinement of CPS
requirements using sysml, template language and contracts,” in Model-
lierung 2018, ser. LNI, vol. P-280, 2018, pp. 245–260.

[14] L. Lestingi, M. Askarpour, M. M. Bersani, and M. Rossi, “A model-
driven approach for the formal analysis of human-robot interaction
scenarios,” in SMC, 2020.

[15] M. Askarpour, D. Mandrioli, M. Rossi, and F. Vicentini, “SAFER-
HRC: Safety Analysis Through Formal vERification in Human-Robot
Collaboration,” in SAFECOMP. Springer, 2016, pp. 283–295.

[16] J. Martinez, A. Ruiz, A. Garzo, T. Keller, A. Radermacher, and
S. Tonetta, “Modelling the Component-based Architecture and Safety
Contracts of ArmAssist in Papyrus for Robotics,” in ICSE workshops,
3rd Int. Workshop on Robotics Software Engineering (RoSE), 2021.

4

https://robmosys.eu/wiki/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki/general_principles:separation_of_levels_and_separation_of_concerns
http://www.omg.org/spec/UML/
https://wiki.eclipse.org/Papyrus/customizations/robotics
https://wiki.eclipse.org/Papyrus/customizations/robotics
https://index.ros.org/doc/ros2/
http://www.omg.org/spec/OCL/
https://www.eclipse.org/acceleo/documentation/
https://www.eclipse.org/acceleo/documentation/
https://es.fbk.eu/tools/ocra/
https://es.fbk.eu/tools/ocra/

	Introduction
	Background
	RobMoSys
	Papyrus for Robotics (P4R)

	The P4R Assertions approach
	The Assertions profile
	Extensibility features for expression languages
	Currently supported languages
	Illustrative example

	Discussion
	Conclusions
	References

