
Inferred Interactive Controls Through
Provenance Tracking of ROS Message Data

1st Thomas Witte
Inst. of Software Engineering and Programming Languages

Ulm University
Ulm, Germany

thomas.witte@uni-ulm.de

2nd Matthias Tichy
Inst. of Software Engineering and Programming Languages

Ulm University
Ulm, Germany

matthias.tichy@uni-ulm.de

Abstract—Interactive controls that enrich visualizations need
domain knowledge to create a sensible visual representation, as
well as access to parameters and data to manipulate. However,
source data and the means to visualize them are often scattered
across multiple components, making it hard to link a value
change in the interface to the appropriate source data. Prove-
nance, the documentation of the origin and history of message
data, can be used to reverse the evaluation of a value and change
it at its source. We present a communication pattern as well as a
C++ support library for ROS to track the provenance of message
data across multiple nodes and apply source changes, reversing
any transformation on the tracked data. We demonstrate that it
is possible to automatically infer interactive 3D user interfaces
from standard, non-interactive ROS visualizations by leveraging
this additional tracking information. Preliminary results from a
prototypical implementation of multiple origin tracking enabled
ROS nodes indicate, that this tracking introduces a significant
but still practicable message size and serialization performance
overhead. To apply this tracking to existing C++ codebases only
small, syntactic changes are necessary: a wrapper type around
tracked values hides all necessary bookkeeping.

Index Terms—data provenance, ROS, source location tracking,
bidirectional evaluation, interactive markers

I. INTRODUCTION AND MOTIVATION

Since its inception in 2007, the Robot Operating System
(ROS) [12] has become one of the most widely used robotics
frameworks. One reason for its success is probably the stan-
dard visualization tool RViz [9]. It can display 3D data and
marker messages from all nodes, integrated into one scene,
thereby providing a consistent view into the system’s state. The
user profits from the mix of visualizations from all components
and layers of the application, as results from one component
can be easily compared with the others. Differences or incon-
sistencies are easily spotted.

Interactive markers [6] extend this concept and enable
the creation of 3D interactive interfaces. They are harder to
implement, as the visual interface must be manually linked to
the appropriate internal data through a callback function. A
node that is able to create a meaningful visual representation
might not be able to access this internal state. If the parameters
or source data were received through a message from another
node, the callback function of the interactive marker cannot
change them across the node boundary without significant
additional coding effort. Conversely, the node with access to

this state or data often lacks domain knowledge to create
appropriate visualizations and controls.

Data provenance [1] is a record of the origin, change history
and relation of a data item to its source. ROS applications
can profit from additional provenance information in ROS
messages: e.g. documenting the source and history of data
for validation or security; making dataflow more transparent
to the user to improve explainability and trust; attribution of
data sources to provide error traces and recreate or reverse
changes on data. Here, we concentrate on using provenance
information to improve visualizations and providing interactive
interfaces with low to no additional code.

A. Overview and Running Example

interactive_script

slt_trajectory

slt_quad

RViz

Pose

Marker

M
ar
ke
r

double b0 = current;
double b1 = mid;
double b2 = target;
double output
 = t�t * b2
 + t�(1-t) * b1
 + (1-t)*(1-t) * b0;

Posetf

Fig. 1. An example application: the user inputs waypoints, a trajectory
is calculated and executed by a simulated quadcopter. The quadcopter and
trajectory are visualized (non-interactive) using RViz.

As our running example, we look at a small ROS applica-
tion, as shown in Figure 1: the user can enter some waypoints
into a script editor (interactive script). These target poses
are then sent to a minimal trajectory planner (slt trajectory).

Here, a trajectory is planned from the simulated quadcopter’s
current pose to the received target pose. To interpolate between
these poses, a quadratic bezier curve is used. The interpolated
poses are then sent at a rate of 50Hz to a virtual quadcopter
(slt quad) that simulates the movement. The trajectory planner
and quadcopter node both publish additional visualizations:
the planned trajectory and its control points as well as a
quadcopter model depicting the simulated quadcopter’s current
pose. The bottom picture in Figure 1 shows a screenshot from
RViz with these non-interactive visualizations.

In order to create a more interactive interface, it is not
sufficient to implement interactive marker and replace the vi-
sualizations in the trajectory planner and the quadcopter node.
When the control points of the trajectory or the quadcopter
are dragged in RViz, the trajectory and the text in the editor
should adapt accordingly. However, the trajectory planner has
no access to the waypoint data or the text buffer as they were
sent from the script node. The interactive markers can also not
be created by the interactive script node, as it lacks domain
knowledge which planning algorithm is used. By calling a
service on each other node to return the trajectory or set values
in the text buffer, this problem can be solved at the cost of a
more complicated node interface.

Making the simulated quadcopter interactive is a much more
complicated problem: when the quadcopter is dragged around,
the trajectory and editor content should change accordingly.
The quadcopter node, however, has no information, how its
received pose relates to the target pose in the script–i.e. if
and how the data was changed or transformed–which makes
a sensible change of the target pose in the editor impossible.

We propose a general mechanism to access and manipulate
data across ROS nodes. When a value change on a received
message is requested, the data is traced back to its node of
origin and the data source is changed to a value that produces
the desired value in the next received message.

B. Research Questions

Motivated by this problem of tracking the origin of data
items and its application to visualization, we pose the follow-
ing research questions:

RQ1 What additional information is needed to preserve
the origin and change history of data items from
the data source across the ROS node graph?

RQ2 How can we enable changing these data sources
from any part of the ROS application?

RQ3 How can we hide the necessary bookkeeping for
this tracking from a ROS developer?

RQ4 How can we use provenance-annotated messages
to infer interactive user interfaces from non-
interactive data?

RQ5 What is the overhead in message size and perfor-
mance of this provenance tracking?

C. Contributions

To answer the aforementioned questions, this paper makes
the following contributions that are explained in more detail

in the following sections:
RQ1: We wrapped the ROS Message types and added a

header that contains provenance data and allows tracking the
origin and history of ROS messages through the ROS graph.
For each field and each list element of arbitrarily nested ROS
messages, the origin node, an id and all previous operations
on it are tracked.

RQ2: A SourceChange message to make data changes on
the origin of tracked messages across ROS nodes is defined.
The node of origin maintains a list of all known source
locations, each of which is backed by a parameter to enable
changes at runtime.

RQ3: We introduce a C++ support library that eases the
transition to, and working with, provenance-annotated data.
A generic wrapper type around values tracks all changes and
manages provenance information. An extended TrackedNode
class handles receiving and applying SourceChange requests.

RQ4: By using the provenance information of the non-
interactive visualization messages, the callback of a similar
interactive marker is connected to a source change on the
visualization data’s node of origin. We implemented such
a node as part of our example: slt visualization attaches
interactive controls to visualization messages if provenance
information exists.

RQ5: We measured the message size and performance
overhead for our value wrapper. Results for our example show
a 3× to 6× message size overhead and 1.8µs tracking overhead
per arithmetic operation. While this is clearly too expensive for
numeric applications or tracking all messages, it is practical
to use for selected messages and data flows.

D. Outline

In the following sections, we will first discuss the foun-
dations this work is based on as well as other related work.
In Section IV, the provenance tracking across the ROS graph
and the accompanying support library is presented in more
detail, answering RQ1-RQ3. In Section V, we will then
show a possible application of this tracking as outlined in
our example: interactive interfaces are derived from non-
interactive visualizations. This section will also discuss the
limitations of our approach, answering RQ4. We evaluate the
performance and size overhead in this example in Section VI
(RQ5), before drawing a conclusion and outlining possible
future improvements to our work.

II. FOUNDATIONS

Our work applies provenance tracking to ROS applications.
This section gives a quick overview and introduction to some
of the frameworks and techniques used in the remainder of
this paper.

A. ROS

The Robot Operating System (ROS) [12] is a robotics
middleware and an ecosystem of standard interfaces, tools
and third-party components that robotics applications can build
upon. Its strongly component-based and decentralized archi-
tecture enables fast prototyping, higher resilience, simplified

testing and reconfiguration at runtime of applications. Each
ROS component–called node–is often assigned to a separate
process. Communication between nodes is done through two
basic concepts: topics and services. While topics create a uni-
directional, named and typed many-to-many communication
channel, a service is an interface for a named, synchronous
remote procedure call. Several libraries offer more sophisti-
cated, often domain-specific communication patterns on top
of topics and services: tf2 [5] handles spacial and temporal
coordinate transformations by collecting transformations from
different sources and joining them into a transformation tree.
The client library then offers transformations between any
two coordinate frames in this tree. Actions [13] model long
running asynchronous, preemptible commands that provide
continuous feedback on their progress. InteractiveMarkers [6]
create interactive 3D interfaces, that can assign callbacks
to mouse events on these 3D objects. Each of these, more
sophisticated, communication patterns needs their own server
and client library that creates and connects necessary topics
and services and provides a clean programming interface that
hides internal complexity.

B. Interactive Markers

Non-interactive visualizations can be easily created in
ROS by sending a visualization msgs/Marker message that
is then interpreted and visualized in RViz or other compatible
tools [10][16]. A marker mainly consists of a basic shape,
pose, color and scale. The possibility to seamlessly integrate
multiple visualizations from different sources make RViz a
very powerful visualization and debugging tool. Early on in
the development of ROS the need to create interfaces for
interactive manipulation arose, leading to the development
of interactive markers [6]. An InteractiveMarker consists of
several controls, each of which can use one or more Markers as
their representation, an interaction mode to select its possible
interactions and behavior and a callback to execute a custom
reaction to this interaction.

C. Provenance Tracking

Provenance is a century old concept of noting and pre-
serving the ownership and creation history of works of art.
Provenance is also an integral part in many areas of scientific
research, noting and publishing documentation of the process
of empirical research to enable reproduction. More recently,
provenance found its application in computer science [7]
mainly in two areas: machine learning, where provenance is
used to track the origin and data used for pre-trained models
and security, where the concept of data provenance [1] is
used to formally describe the disclosure of confidential data
through functions. Provenance tracking at runtime can also be
used as an alternative to static data flow analysis, sacrificing
completeness for easier implementation.

Runtime value tracking can be implemented either directly
as a feature of the language runtime, by wrapping the value
or by observing the system and watching for data changes.
However, implementation as a feature of the language runtime

requires changing the language and observation of the system
requires runtime introspection capabilities provided by the
language. A value wrapper does not have specific language
requirements but can come at the cost of major syntactic
changes to the program to implement it.

The value type is extended–in the interpreter or through
a wrapper–by the origin of the data, e.g. file and offset of a
number literal.As this provenance data is assigned to the value
it is automatically carried along when bound to a variable
or used as a function argument. If a tracked value is used
in an expression, the resulting value has the same origin.
Additionally, the relation between the operand and the result
of the expression can be tracked, which makes it possible
to reverse its evaluation and link a change of the result to
a corresponding change of the origin [3].

Reversing the evaluation of binary operators such as + leads
to obvious problems as the relation between the argument tuple
and the result is not bijective and therefore not invertible. It
is, however, possible to create a heuristic that injectively maps
the result to the arguments, e.g. by changing only one operand
and keeping the other operand constant.

III. RELATED WORK

Value tracking at runtime to record provenance information–
similar to our approach–was previously proposed and applied
to various domains:

By instrumenting toString methods in Java code, Tiny Struc-
ture Editors [8] can automatically generate graphical interfaces
to change complex data structures. In contrast to our work, it
is limited to textual string representations and unable to track
the origin across multiple processes.

The code portal editor Inline [2] integrates similar tracking
of values into the live evaluation of expressions in the code
to create a portal for the result that is editable and can be
applied to its source. The editor supports live evaluation for
its own functional language, that integrates the value tracking
in the interpreter itself to enable value tracking for any value
without needing any annotations or changes by the user. Using
C++ instead, we cannot introspect the program at runtime to
hide the tracking completely, so we rely on our value wrapper
implementation.

Similarly, the code editor used in our example–
interactive script [15]–uses a custom implementation of
the Lua language to automatically annotate value literals with
their location in the text buffer and can draw an interactive
live preview in RViz. This paper improves it by tracking
values across multiple nodes and implements the interactive
marker interface in a more generic way.

Sketch-n-sketch [4][11] combines provenance tracking with
an interactive graphical preview for different use cases. Bidi-
rectional editing is implemented for HTML pages, generated
from a functional, declarative language and for a SVG editor
amongst other things. The value tracking differs in tracking
multiple sources for a value and deferring application of the
source change heuristic to let the user select where and how
these changes should be applied in the editor.

IV. PROVENANCE TRACKING IN ROS

PoseTracked
data: {position: {x:2, y:0, z:1}}
location: {
 x: ("interactive_script", 0, ""),
 y: ("interactive_script", 1, ""),
 z: ("interactive_script", 2, "")}

slt_trajectory

t = 0.3;
x'= x�t;
y'= y�(1-t);
z'= z;

PoseTracked
data: {position: {x:0.6, y:0, z:1}}
location: {
 x: ("interactive_script", 0,"0.3;*;"),
 y: ("interactive_script", 1,"0.7;*;"),
 z: ("interactive_script", 2,"")}

SourceChange
source_node: "interactive_script"
location_id: 0
new_value: 5

interactive_script

moveTo(2, 0, 1, 0)

id:0 id:1 id:2

5

slt_quad
force_value(x, 1.5);

 x0= x0*0.3 = 1.5
 x0= 1.5/0.30= 5

Fig. 2. interactive script sends a provenance-annotated PoseTracked message
to slt trajectory. It sends a new message to slt quad, based on the received
data. slt quad can change the source in interactive script by requesting a
SourceChange.

To solve this problem of communicating changes to the
appropriate node without cluttering the nodes’ interfaces, we
adapt the concepts of source location tracking and bidirectional
evaluation to the ROS communication primitives. Implement-
ing this system requires additional provenance information in
the received messages:

• The origin (node and source location therein) of the
received data.

• The relation between the received value and its source.
• A way to change the data at its source.
Under the assumption that the control flow remains un-

changed and no aliasing occurs, the evaluation can then be
reversed with a new value and the original value can be set to
produce the desired new value after reevaluation, e.g. in the
next message that is received.

We use the Pose messages from the example as shown in
Figure 2 to introduce the pattern that can then be applied to
other messages in the quadcopter example.

A. Communication Pattern and Tracking Operations

The script node (interactive script) creates a message from
the waypoint entered by the user. The ranges in the text
buffer containing the values are identified by an id that is
added to the message as additional provenance information.
For each data field, the name of the node, the location id and
a serialized expression is recorded. Then, slt trajectory does

some calculations on the received data–e.g. to interpolate be-
tween waypoints–creating a new PoseTracked message. Note,
that the origin node for each field is still interactive script
but the expression changed to reflect the calculations on
these values by slt trajectory. In slt quad, the received data
should be changed, e.g. to react to user interaction: the user
dragged the simulated quadcopter from x = 0.6 to 1.5 and
wants to change the waypoint in the editor accordingly. Using
the recorded history of the pose, the relation between the
simulated quadcopter’s position and the initial waypoint is
known. By first applying the inverse expression history of the
old value–2 ∗ 0.3 = 0.6–to the new value–1.5/0.3 = 5–and
then sending a SourceChange message to the value’s node of
origin, the correct literal in the editor is replaced. Resending
the waypoint and recalculating the trajectory now places the
quadcopter in the desired position.

To implement this communication pattern, the following
operations on values are necessary:

create location: This operation creates a changeable
code location for a value. As the compiled C++ code–and
encoded data, e.g. constants–of the node cannot be changed
at runtime, a parameter is created, initialized to the argument
value and given an id. Alternatively, the value can originate
from an external source, e.g. a file. In this case, instead
of a parameter, a getter/setter pair of functions is used to
read and write the location. The source location of the call
to create location–file, line and column–is used to identify
subsequent calls from the same location that then return the
current value of the same parameter or the result of the
corresponding getter function.

force value: By using the force value operation, the
origin of a tracked value can be changed. The inverse of all
previous arithmetic operations on the old value is applied to
a target value which evaluates to a new value for the origin.
A SourceChange message is then created and sent to the old
values node of origin. Assuming that an inverse of all previous
arithmetic operations exists, that the control flow remains
unchanged for the new value and there are no aliasing effects
due to the origin appearing multiple times in the evaluation
history, the next value received from the same origin evaluates
to the target value at the force value call.

apply source change: A node must apply all received
source changes to the appropriate locations. The location id is
used to determine the appropriate parameter or setter function
for external locations.

reevaluate: In some cases, it is necessary to poll for
changes to the source of a value. Using the reevaluate opera-
tion, the origin of the value–or each of its fields recursively, in
case of a structured data type–is queried for its current value.
Then all recorded operations on it are reapplied. This can be
used if the value is updated infrequently or not at all but it
should still reflect the current state of its origin.

arithmetic operators: If an arithmetic operator is applied
to a tracked value, in addition to its normal semantics, the oper-
ation must be logged to enable its inversion. In case of binary
operators, we track only one source, even if both operands

provide provenance information. Some simple heuristics are
used in this case: we prefer the origin of the left operand except
if this would lead to problems inverting the operation e.g. a
multiplication with 0. We deliberately decided against tracking
all sources, which would allow deferring this decision to the
application of source changes: tracking only a single source
reduces the size of the provenance header of a message and
simplifies its serialization.

selection of fields and list elements: ROS messages are
structured data that can contain other messages or lists. Each
field or list element needs to be tracked separately as they
might stem from different sources. Selecting a field of a
tracked message or a list element of a tracked list should
again return a tracked value with the appropriate slice of the
provenance information.

reevaluate
get_slt_value

sc_sub sc_pub

force_valuecreate_location

Publisher Subscriber

Parameters

Location
Manager

external
location

SourceChange

MsgTracked

/sc

val val

val

expression
history

re
ve
rs
e

ap
pl
y

Fig. 3. The full rosslt communication pattern. Additional communication and
operations to support value changes across nodes for any data received via a
tracked message.

We use a wrapper around messages and values to intercept
the arithmetic operators and field selection in particular. This
way, all bookkeeping on the provenance information is hidden
from the user and changes to the nodes are kept minimal.
The management of node locations, applying and creating
source changes is done in a wrapper derived from ROS2’s node
class. Simply by changing a node’s base class and wrapping
relevant values that should be tracked, a node can be made
provenance aware; tracked data can be changed across node
borders without cluttering the node’s interface or additional
node complexity.

Figure 3 shows the full interface of two provenance-aware
nodes. The user code resides in the dashed boxes at the top,
while the rosslt library hides additional topics, services and
management of changeable source locations. This pattern is
applicable to any two nodes that exchange a tracked message,
i.e. a message containing the additional provenance header to
preserve provenance data for each of its message fields.

B. The rosslt Support Library

To help this transition towards provenance tracking enabled
nodes and to reduce the necessary code changes to a minimum,
we created the rosslt library for ROS2. Currently, the library
supports only nodes written in C++; as C++ is more restrictive
in terms of operator overloading and runtime type introspec-
tion, we assume a Python port of the library is straightforward
and feasible. Using aspect-oriented programming techniques,
the library could also omit the value wrapper, eliminating
nearly all code changes.

The library consists of two parts: a templated wrapper class
for values that tracks and updates provenance information
and an extension of ROS2’s rclcpp::Node class that manages
changeable locations, applies source changes and provides a
method to change tracked values.

Tracked value wrapper: By overloading the arithmetic
operators in templated value wrapper and then delegating it
to the wrapped type, the wrapper can intercept the evaluation
of expression. It serializes argument values and operators to a
string so that they can be reapplied (reevaluate operation) or
inverted (force value operation).

A tracked value can be cast to an untracked value to allow
its usage as an argument to not yet converted functions. It
can also be cast to an appropriate tracked ROS message type
to minimize the overhead when transferring it to other ROS
nodes.

Listing 1
ACCESSING ELEMENTS OF COMPLEX TRACKED TYPES.

1 Tracked<vector<int>> vec = ...
2 Tracked<int> i = vec[0];
3 vec.push_back(5);
4

5 struct IntPair {int a,b;};
6 Tracked<IntPair> ip = ...
7 Tracked<int> x = GET_FIELD(ip, a); // x = ip.a;
8 SET_FIELD(ip, b, i); // ip.b = i;

Tracked structured data–e.g. ROS messages–and tracked
lists need special handling: accessing a field of the data
structure or a list element should inherit a corresponding slice
of tracking information from the parent struct or list. Listing 1
shows some of these operations. The tracking header of the
parent struct or list manages provenance data for each field or
list item separately. The GET FIELD and SET FIELD macros
cannot be avoided as C++ does not allow overloading the ’.’
operator.

TrackedNode ROS interface: As shown in Figure 3, the
ROS interface extends the rclcpp::Node class, subscribes to
the global source change topic and offers a service to request
values for reevaluation. To support value changes at runtime,
changeable source locations must be explicitly defined and are
backed by either a parameter or a pair of functions to set and
get the value of an external location. When the control flow
reaches the source location for the first time, the parameter or
external location is set to the value of the given literal. Each

subsequent evaluation of the source location uses the current
value of the parameter or external location instead, making the
source location virtually changeable at runtime.

V. GENERIC, INTERACTIVE INTERFACES

The provenance information in tracked values is similar to
the information encoded in callback functions to events of
interactive markers: the event callback connects a change in
the visualization to a change in internal state. The programmer
is responsible to provide the correct relation between the
visualization and the internal state as well as means to access
it, through calling setter methods, services etc. This code is
often complex, highly error prone, and hard to maintain if
the changed data is not directly accessible – e.g. if it is
managed by another node – or the relation is unknown –
e.g. due to other nodes processing or transforming the data
in between. The provenance header and the support library
provide these capabilities: the origin of and relation between
visualization and its source is contained in the provenance
header of a MarkerTracked message and can be changed by
calling the force value method with the marker’s changed
position. Therefore, the provenance header and rosslt library
can be seen as a structured and generic access mechanism that
can replace specialized callback code to access and change
values in many cases. While the generic callback that uses our
library can obviously express less than a hand coded custom
callback function, it avoids the aforementioned problems: it
requires no additional user code and automatically creates a
correct relation to the source data by tracking the data flow at
runtime.

interactive_script

slt_trajectory

slt_quad

RViz

PoseTracked

InteractiveMarker

M
ar
ke
rT
ra
ck
ed

double b0 = current;
Tracked<double> b1 = mid;
Tracked<double> b2 = target;
Tracked<double> output
 = t�t * b2
 + t�(1-t) * b1
 + (1-t)*(1-t) * b0;

PoseTrackedtf

slt_visualization

MarkerTracked

Fig. 4. Changes (highlighted in red) to the example to enable provenance
tracking and interactive visualizations. An additional node (slt visualization)
creates interactive markers from tracked non-interactive markers.

Using provenance tracking and our support library, we can
transform our example from before as shown in Figure 4.

The message types of all nodes are extended to include
provenance information and all relevant code paths use the
Tracked value wrapper. Apart from these changes, the code
stucture and and node interfaces remain unchanged. A new
node slt visualization is introduced. It automatically translates
non-interactive visualizations with provenance information
(MarkerTracked) to interactive markers, displayed in RViz. If
the x, y or z coordinate of the position of the marker contain
provenance information, a control for the respective axis
is created. Accordingly, markers with partial or incomplete
information have reduced modes of interaction and can not be
moved along all three axes.

A. Generality and Limitations

The effect of moving the generated interactive marker is
determined only by its provenance information. While the
generated interfaces correctly manipulate the source data, the
resulting behavior of the markers can be very unintuitive:
multiple source locations might influence the marker posi-
tion but the change is mapped to only one of these. The
implemented left bias on arithmetic operators–the origin of
the left operand is used for the result preferentially–can be
exploited to influence and hint the generated markers towards
a preferred semantic by rearranging calculations. Similarly,
by explicitly discarding provenance information a data source
can be excluded from changes to the result. An intermediate
node, like slt trajectory in the example, can cast a value
that should not be considered for a change to its untracked
base type, to exclude data sources based on local domain
knowledge. Implementing such hints contradicts our goal to
create interfaces without additional code changes and is–in
our experience–seldom necessary for applications of similar
complexity to the presented example’s.

There are no restrictions on the ROS message type: mes-
sages can be arbitrarily nested and may contain scalars or
lists of any basic data type. However, messages with many
values–such as large lists or matrices of values–will suffer
from a high size overhead as explained in Section VI. Often,
message data is transformed into other container types i.e.
lists are transformed into vector types of a linear algebra
library. In these cases the underlying scalar value type can
be changed to its tracked counterpart i.e. to track changes
through matrix operations. Due to the high number of basic
arithmetic operations, the additional bookkeeping and tracking
will reduce the performance significantly and might not be
feasible.

The implemented value tracking approach can easily capture
dataflow but is oblivious to control flow. All changes to a
values source happen under the assumption that this does not
change control flow. This might not be the case, if any value
that is dependent on the changed value is used in a condition
of a control flow statement. In most cases the assumption holds
true: even if the condition depends on the value it detects edge
cases most of the time which our–often small–output changes
hardly trigger.

Aliasing is another problem that can cause incorrect
changes–that is, changes that do not reevaluate to the desired
output–at the source of a value. The value change is tracked
back to a single source to change. If the value depends more
than once on this source, reversing the evaluation accounts
for only one of these occurrences. This problem can be often
avoided by using specialized functions, e.g. by using the power
function to square a value instead of a multiplication.

Similarly, changing the source of a value often causes side
effects. The changed value might be used in entirely different
contexts, which change as well. This is an intended effect; the
change should not create special cases and keep the structure
of the program intact and consistent.

VI. EVALUATION

All examples used and presented in this paper are available
in our public repository [14].

In order to estimate the overhead of our value tracking
implementation, we measured the message size overhead and
the time to deserialize and apply a values expression history,
as these directly limit the applicability in ROS applications.
Additionally, we show and compare the code of parts of the
minimal trajectory planner used in the example. This demon-
strates the practicability of introducing and using provenance
tracking in new or existing codebases.

A. Message Size and Expression Deserialization Overhead

The size overhead of tracked messages varies depending
on how many fields have associated provenance data, the
length of its expression history and the name of its origin.
The minimal size overhead is 8 bytes per message, if no
provenance data is available. In our example we observed
a size increase of around 60 to 100 bytes per tracked field.
For a PoseTracked message this led to a 6 times larger peak
message size (60 to 359 bytes, 17.8kB/s at 50Hz). For the
MarkerTracked messages sent to visualize the trajectory, we
observed an around 5 times larger message size (786 to 4034
bytes).

TABLE I
BENCHMARK RESULTS FOR TRACKED VALUES.

50 random operations time per operation

Tracking 90.5µs 1.81µs
Reapply 21.5µs 0.43µs
Reverse 81.2µs 1.62µs

To measure the time needed to create, reverse and apply the
serialized expression history of a tracked value, we created a
simple benchmark that tracks and times applying and reversing
50 random binary arithmetic operations. Results are shown
in Table I (Core i5, 2.3GHz). Tracking includes applying
the operation to the value and recording the operation in its
expression history. Reapply measures the time needed to apply
the history to another value, e.g. as a part of the reevaluation
operation. Reverse measures the time needed to reverse the

expression history and then applying it, e.g. as a part of the
force value operation.

While the current increase in message size limits the adop-
tion of provenance tracking to selected topics and low message
rates, we expect that a more sophisticated implementation–
transmitting only changes in the provenance header and com-
pressing it–can reduce this overhead significantly. Tracking
the expression history can create a high overhead for numeric
tasks due to string operations when serializing these arithmetic
expressions. For less computation intensive tasks–like in the
example–the overhead is negligible compared to message
transport between nodes.

B. Code Comparison

Listing 2
EXCERPT FROM SLT TRAJECTORY; THE NECESSARY CHANGES TO
IMPLEMENT PROVENANCE TRACKING ARE HIGHLIGHTED IN RED.

1 struct Bezier {
2 Tracked<geometry_msgs::msg::Point> b0, b1, b2;
3 double tau;
4

5 Tracked<geometry_msgs::msg::Point>
get_trajectory_point(double t) const

6 {
7 if (t <= 0) return b0;
8 if (t >= tau) return b2;
9 t /= tau;

10

11 auto x = t * t * GET_FIELD(b2,x)
12 + 2 * t * (1-t) * GET_FIELD(b1,x)
13 + (1-t) * (1-t) * GET_FIELD(b0,x);
14 auto y = t * t * GET_FIELD(b2,y)
15 + 2 * t * (1-t) * GET_FIELD(b1,y)
16 + (1-t) * (1-t) * GET_FIELD(b0,y);
17 auto z = t * t * GET_FIELD(b2,z)
18 + 2 * t * (1-t) * GET_FIELD(b1,z)
19 + (1-t) * (1-t) * GET_FIELD(b0,z);
20

21 Tracked<geometry_msgs::msg::Point> result;
22 SET_FIELD(result,x,x);
23 SET_FIELD(result,y,y);
24 SET_FIELD(result,z,z);
25 return result;
26 }
27 };
28

29 ...
30

31 auto p = current_trajectory.get_trajectory_point(t);
32 Tracked<geometry_msgs::msg::Pose> pose;
33 SET_FIELD(pose, position, p);
34 publisher_->publish(
35 static_cast<rosslt_msgs::msg::PoseTracked>(pose));

The introduction of provenance-annotated data flows into
an existing codebase should be as simple and unintrusive
as possible. Listing 2 highlights the necessary changes in a
representative excerpt of the slt trajectory node that is used
throughout the running example. The changes can be grouped
into three categories:

• Type changes to use the Tracked value wrapper to hold
additional provenance information.

• Usage of the GET FIELD and SET FIELD macros to
access fields of messages, as C++ forbids overloading
the ’.’ operator.

• Type casts to automatically translate tracked values into
appropriate ROS messages.

All these changes are syntactic and do not require restructur-
ing or refactoring of the code, reducing the risk of introducing
unwanted semantic changes or bugs. As the structure of the
code is unchanged, the code complexity does not increase
according to most popular metrics.

VII. CONCLUSION

We applied the concept of provenance tracking to ROS
applications to link values to their origin across multiple nodes.
The necessary provenance information–the node of origin, the
location and history of applied operations–is transmitted using
a provenance message header, which introduces a significant,
but still practicable, increase in message size and processing
performance. The proposed communication pattern then uses
an additional SourceChange message and an inversion of
the value expression history to communicate changes to a
value back to its origin. The rosslt hides this additional
communication and bookkeeping where possible and exposes
methods to create changeable source locations, trigger changes
and reevaluate values. While Marker messages are used to
display non-interactive visualizations in RViz, the additional
provenance header of MarkerTracked messages can be used
to automatically generate interactive visualizations. This is
demonstrated by creating an interface from visualizations of a
planned trajectory and a simulated quadcopter: the trajectory
and quadcopter can be dragged around to change the way-
points for the quadcopter in an independent interactive script
node that publishes tracked positions.

While our implementation strictly limits itself to the ROS
ecosystem, the concepts and communication pattern can be
applied to other component based architectures. The ROS
implementation demonstrates the feasibility of our approach
and showcases how existing patterns and tools can benefit from
additional provenance information.

VIII. FUTURE WORK

We plan to support Python nodes in the future. The far
superior introspection capabilities compared to C++ will allow
creating a seamless tracking of values without requiring code
changes. Other limitations of our current implementation, like
lacking support for the vast amount of nodes still using ROS1,
missing library support for transmitting tracked values using
services and actions and reevaluation of structured data being
limited to ROS message types can be tackled as well.

Our long term vision is a complete provenance tracking
throughout the ROS application: from static launch configura-
tion files or mission descriptions as data source to human-robot
interaction interfaces–e.g. hand guiding of a robot–to generate
source changes.

REFERENCES

[1] Umut A Acar et al. “A core calculus for provenance”.
In: Journal of Computer Security 21.6 (2013), pp. 919–
969.

[2] Alexander Breckel and Matthias Tichy. “Live Pro-
gramming with Code Portals”. In: Workshop on Live
Programming Systems. Workshop on Live Programming
Systems - LIVE’16. 2016.

[3] James Cheney, Umut Acar, and Amal Ahmed. “Prove-
nance traces”. In: arXiv preprint arXiv:0812.0564
(2008).

[4] Ravi Chugh et al. “Programmatic and direct manipula-
tion, together at last”. In: ACM SIGPLAN Notices 51.6
(2016), pp. 341–354.

[5] Tully Foote. “tf: The transform library”. In: 2013 IEEE
Conference on Technologies for Practical Robot Appli-
cations (TePRA). IEEE. 2013, pp. 1–6.

[6] David Gossow et al. “Interactive markers: 3-d user
interfaces for ros applications”. In: IEEE Robotics &
Automation Magazine 18.4 (2011), pp. 14–15.

[7] Paul Groth et al. An architecture for provenance sys-
tems. Tech. rep. University of Southampton, 2006.

[8] B. Hempel and R. Chugh. “Tiny Structure Editors
for Low, Low Prices! (Generating GUIs from toString
Functions)”. In: 2020 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC).
2020, pp. 1–5.

[9] Dave Hershberger, David Gossow, and Josh Faust. RViz,
3D visualization tool for ROS. [19-01-2021]. URL: http:
//wiki.ros.org/rviz.

[10] Burkhard Hoppenstedt et al. “Debugging Quadrocopter
Trajectories in Mixed Reality”. In: 6th International
Conference on Augmented Reality, Virtual Reality and
Computer Graphics (SALENTO AVR 2019). Lecture
Notes in Computer Science. Springer, Apr. 2019.

[11] Mikaël Mayer, Viktor Kuncak, and Ravi Chugh. “Bidi-
rectional evaluation with direct manipulation”. In: Pro-
ceedings of the ACM on Programming Languages
2.OOPSLA (2018), pp. 1–28.

[12] Morgan Quigley et al. “ROS: an open-source Robot
Operating System”. In: ICRA Workshop on Open Source
Software. 2009.

[13] Higor Barbosa Santos et al. “Control of Mobile Robots
Using ActionLib”. In: Robot Operating System (ROS).
Springer, 2017, pp. 161–189.

[14] Thomas Witte. rosslt. [19-01-2021]. URL: https://github.
com/sp-uulm/rosslt.

[15] Thomas Witte and Matthias Tichy. “A Hybrid Editor
for Fast Robot Mission Prototyping”. In: 2019 34th
IEEE/ACM International Conference on Automated
Software Engineering Workshops (ASEW). IEEE. 2019,
pp. 41–44.

[16] Antonio Zea and Uwe D Hanebeck. “iviz: A ROS Vi-
sualization App for Mobile Devices”. In: arXiv preprint
arXiv:2008.12725 (2020).

