
Considerations for using Block-Based Languages
for Industrial Robot Programming – a Case Study

Christoph Mayr-Dorn
Johannes Kepler University

Linz, Austria
firstname.lastname@jku.at

Mario Winterer, Christian Salomon, Doris Hohensinger, Rudolf Ramler
Software Competence Center Hagenberg GmbH

Hagenberg, Austria
firstname.lastname@scch.at

Abstract—The paradigm shift triggered by Industry 4.0 leads
to a fast rising number of industrial machinery and collabo-
rative robots that increases the need for flexible customization
of production processes and automation workflows. End-user
programming of industrial robots has become an essential ca-
pability for all areas in industry. Consequently, different visual
programming languages have found their way into the domain
of industrial robot programming. In this paper, we investigate
the applicability of block-based programming languages for large
and complex robot programs in realistic environments. Here, a
key aspect of robot programming is not only the interaction
with the physical environment, but also the robot’s interaction
with other shopfloor participants at the software control level.
To this end, we analysed the requirements for programming a
robot based a real world production cell and implemented the
necessary programming constructs using Blockly, an open-source
block-based visual language. We assessed the results comparing
the implementation of a change in Blockly and the Sequential
Function Chart-based language. We find that while Blockly is
able to express large and complex real-world robot programs,
a major contributing factor is not just the language itself but
the presentation of the robot’s run-time environment as well
as support by the development environment (i.e., editor). Our
preliminary user experiment has identified a set of challenges in
understanding and changing such programs that we now plan to
follow-up with a larger user study.

Index Terms—Robot programming, end-user programming,
manufacturing automation, block-based programming languages

I. INTRODUCTION

Flexibility is key in industrial manufacturing systems and
production lines in the era of Industry 4.0 [1]. There is a
growing trend towards small batch sizes, individualization of
products, and shorter life-cycles. The increasing demand for
more flexibility is mastered by more capable and versatile
hardware, controlled by highly configurable and adaptable
software. Thus, flexibility is often directly connected to the
ability to widely and easily adapt the software to expected as
well as unexpected changes due to new product types or a
changeover in the processing and logistic workflows.

Despite constant investments in smart and autonomous robot
systems making use of emerging technologies such as artificial

The research reported in this paper has been supported by the Austrian
Ministry for Transport, Innovation and Technology, the Federal Ministry for
Digital and Economic Affairs, and the Province of Upper Austria in the frame
of the COMET center SCCH.

intelligence [2], there is still the need to involve humans in the
process of adjusting and extending automated workflows. Be-
sides many scenarios in today’s manufacturing and production
landscape, this need is also embraced in the development of
collaborative robots that work alongside humans and support
many different tasks by enabling automation. Adapting this
automation support to individual needs and tasks is essential
for a productive collaboration of humans and robots.

The paradigm shift triggered by Industry 4.0 leads to a fast
rising number of machinery and robots and interconnected
environments that bring human workers and robots closer
together. Thus, more and more human operators are affected
and many of them have a highly different technical background
and only little or no programming skills. To enable flexible
adoption and extension of robot programs even for untrained
operators, programming environments and tool support have
to be highly intuitive, easy to use, and widely accessible.

Therefore, visual languages for end-users are frequently
applied in industrial robot programming. Prominent examples
are icon-based flow charts like MORPHA [3] or the ENGEL
Programming Language (EPL), which represent commands as
colored graphical pictograms connected and aligned according
to the program’s control flow. Large and complex robot tasks
are implemented in these languages. Human operators are
expected to be able to understand and change these programs
in order to adapt tasks to their needs and environments.

Nowadays, block-based visual programming languages have
received much attention. These languages are typically used
for educational purposes with the goal of making programming
more accessible to a larger audience, especially for novice
users and young learners. Despite their success in education,
which includes teaching of programming robots like Nao [4]
and Sphero [5], these languages are barely found in context
of industrial projects. However, several studies have been
conducted that indicate the usefulness of block-based program-
ming languages also for industrial robots [6]–[9].

The studies conducted so far usually apply small-scale ex-
amples of robot programs suitable for controlled experiments.
In our study we focuses on the question whether visual end-
user programming using a block-based programming language
is applicable for implementing large and complex real-world
robot programs. A key aspect of the industrial robot envi-
ronment under investigation in this paper is integration with



other shopfloor participants. Robots are not merely picking and
placing parts but need to interact with other machines: query
their state, wait for events, and send out signals in return. In
order to obtain insights under realistic conditions, we ported
an existing robot program that is actually used in industry
to Blockly and investigate how an exemplary (but realistic)
adaptation in Blockly and in the original EPL version may be
implemented. We identify key considerations for supporting
flexible programming of industrial robot behavior such as the
need to support customization at multiple levels of abstraction
or the integration of connected machines unknown to the
programmer at the time of customization, both which go well
beyond the actual control of the physical robot movements.
We identified through preliminary user observations that iden-
tifying the relevant programming constructs from the many
available elements in a heterogeneous production cell is one
key concern.

The remainder of this paper is organized as follows: In
section II we describe block-based programming and the
industrial context of this work. In Section III we present our
research questions and the experiment setup. In Section IV we
describe the implementation in Blockly and its toolbox, and we
compare the resulting Blockly program and the implemented
change task with the EPL counterpart in Section V. In Section
VI we conclude the paper and outline avenues for future work.

II. BACKGROUND

A. Block-Based Programming
A block-based programming language is a type of visual

programming language. It uses blocks to represent statements,
i.e. the atomic conceptual elements of a programming lan-
guage, in contrast to text-based languages where statements
are mapped to words. Usually an instruction is expressed by
a block representation that has a specific shape and color-
code related to its type. Blocks also contain a describing text
and/or an icon as well as optional editable fields to allow users
to provide additional input. Most blocks have characteristic
dents or nobs (following the metaphor of puzzle pieces)
that provide visual clues to the user about where matching
blocks can be connected to combine elements to syntactically
correct programs. Furthermore, the resulting programs appear
as larger blocks themselves, containing groups of aligned
(nested) blocks from which they are compiled.

Modern block-based programming editors offer support for
drag-and-drop of blocks and for snapping matching blocks
together. Individual blocks can be picked from a palette and
inserted into a program by dropping them on another block
where it will snap in place if the dents/nobs of the blocks
match. This feature helps to intuitively explain coding concepts
and to facilitate access to programming for novice users.
According to [10], block-based programming languages are
advantageous over conventional textual languages with respect
to learnability due to the following reasons:

• Programming languages usually require learning the pro-
gramming vocabulary. However, blocks rely on recogni-
tion – not on recall, since blocks can be picked from

palettes and need not to be remembered. Additionally,
the listing of all block types helps the user to become
familiar with language elements and to maintain overview
of system components.

• Programming causes high cognitive load, in particular for
new users. This is reduced, because block-based programs
are structured into smaller and easily recognizable pieces.

• In contrast to conventional programming approaches, syn-
tax errors can be avoided in block-based programming.
The related environment prevents the user from connect-
ing mismatching blocks when assembling elements to
programs.

Block-based programming has gained increasing popularity
over the recent years due to the emergence of new program-
ming systems such as Scratch [11] and Blockly [12]. They
are often used for educational purposes [13]–[15], e.g., when
teaching programming to children. Sometimes, in particular
due to the often colorful look-and-feel of the programming
environments and the provided examples, block-based pro-
gramming is perceived more as edutainment for children rather
than a serious approach to write programs. However, study
results show that block-based programming enables to create
non-trivial programs even for inexperienced users [10]. Conse-
quently, block-based programming has also been suggested for
applications that require end-user programming (e.g., [16]).

B. Blockly

Blockly is a open source JavaScript library for building
block-based programming editors for the web, mainly devel-
oped by Google.1 Blockly defines the general graphical syntax
and provides some basic language blocks out of the box. It also
has an API to define additional custom language elements eas-
ily. Another important part of the Blockly library is its ability
to generate source code out of Blockly programs. Therefore,
it provides extendable code generators for JavaScript, Python,
Dart, Lua, and PHP.

Fig. 1. Hello World example in Blockly.

Due to its accessibility, extensibility, and large community
support numerous popular block-based programming environ-
ments, like MakeCode [17] and Scratch are based on the
Blockly library. Fig. 1 shows a simple example program
printing ten times “Hello World!” implemented in Blockly.
The program contains the following types of elements:

• A subroutine (named “greet the world”) is a callable
code part that may include sub-statements and therefore

1https://developers.google.com/blockly



supports program organization. In contrast to Scratch, a
subroutine in Blockly and MakeCode visually frames its
sub-statement

• Control flow structure like a conditional branch or loop
(“repeat ... times do”) can be used to dynamically change
the behavior of the program dependent on data elements.

• Instructions like “set number to 10” or “print ’Hello
World’ ” in Fig. 1 are either value assignments, system
calls, or subroutine calls. If an instruction requires input
arguments, the according block either supports quick se-
lection via drop-down or provides dents to snap-in proper
input blocks, e.g. variable data elements. In Blockly, even
constant data elements are represented as separate snap-in
elements, in MakeCode and Scratch constant values can
directly be entered in the dents of the instruction block.

C. Industry Context

ENGEL is a world leader in manufacturing injection mold-
ing machines (IMM) used across many industry domains like
consumer electronics, automotive, avionics, food industry, etc.
for producing a huge variety of different plastic parts. ENGEL
also offers several industrial robots – Cartesian coordinate
robots as well as multi-axes articulated robots – which are
usually delivered together with the machine as a production
cell that can be integrated into larger production lines.

The possible tasks of these robots are manifold. The
simplest tasks include removing the molded parts from the
machinery and placing them on a conveyor belt, or picking
up supplied parts and inserting them into the machinery to
be included in the molded product (e.g. the metal part of
a screwdriver). But there are also more complex scenarios,
for example, production processes with multiple molding
steps, in which semi-finished parts are removed, temporarily
stacked and then re-inserted into the machinery. In several
scenarios, collaborating robots are applied together in the same
production cell, which needs coordinating interactions with
each other and the machinery.

To address this need, ENGEL machines include an end-user
programming environment called Sequence Editor to adapt
workflows that are described using the ENGEL Programming
Language (EPL), a visual programming language that is based
on flow charts. The Sequence Editor is used by a wide range
of technicians from well-trained maintenance engineers to
novice factory attendants. As most users have either no or
only limited programming experience, they rely on proven,
predefined robot programs that are provided by ENGEL.

Fig. 2 shows a screenshot of the Sequence Editor with a
preset robot program. Each element in the program represents
an instruction statement of the underlying robot control sys-
tem and is visualized as icon with descriptive text. Clicking
or touching an element opens a dialog to parameterize the
selected element (e.g. arguments of a subroutine call, edit
the condition expression of a conditional statement, etc.).
The toolbox offers language elements – including all flow
control and machinery instructions – that can be used for
programming.

Fig. 2. ENGEL Sequence Editor with a toolbox on the left side (white
background) and the EPL program on the right (grey background).

EPL supports a simple way of code-reuse in form of
blueprints. These are special blocks that act as named con-
tainer for a code fragment. Code is grouped together to a block
that can be collapsed and expanded in the editor. The blueprint
block also appears in the toolbox and can be applied anywhere
in the program. In contrast to code reuse via subroutines, the
application of blueprint blocks results in code duplication. A
copy of the entire code fragment is produced and inserted at
the applied location.

D. Levels of Customizability

Since a production cell may be used in many different
production scenarios, the tasks of the robots have to be
highly customizable. This customization occurs at multiple
levels that reflect the types of user configuring, respectively,
programming the robot. We distinguish between three levels:
Level 1 - Domain-specific program sequences: these consist
of typical tasks a robot carries out inside an injection moulding
cell, e.g., moving into the IMM via three predefined waypoints.
These sequences make use of domain specific concepts, in-
cluding, for example, the expected signals from and to the
IMM, symbolic positions for picking and placing parts, or
movement ranges. Sequences at this level are provided by the
machine manufacturer and allow a quick setup of default robot
programs, respectively, serve as a useful basis for adaptation.
Level 2 - Production site-specific program sequences: these
consist of tasks a robot carries out in a specific production
cell customized to the concrete context of the robot. Aspects
customized at this level typically include whether and where
there is a conveyor belt, whether there is a quality control
station, or any other machine the robot needs to interact with.



At this level, only rough sequences are physically executed by
the robot.
Level 3 - Product-specific programs: a this level, the
production-specific programs are fine-tuned to the concrete
product. As a change of the mould implies the production of
a different product, typically the precise positions for picking
a part, placing a part, and the range in which the robot
gripper may rotate a part need to be adjusted as well. Changes
at this level also may include using different attachments
on the robot arm to actually grip the moulded parts. For
example, instead of one large piece pickable with two vacuum
suction cups, now 4 smaller pieces are produced that require
mounting and controlling two additional vacuum suction cups.
This rarely comes with a change of the robot’s control flow
but is absolutely crucial before the robot can become truly
operational. In practice, adaptation at this level occurs via
setting a subset of variables such as coordinates of symbolic
locations, speed, thresholds, and other control flags that are
explicitly declared as configuration parameters in the robot
program without providing write access to the programs’s
detailed behavior.
In this paper, we focus on the customization need at the level
of production site-specific programs.

To support use cases at the level of production site-specific
programming, the programming language and environment,
thus need to provide following abilities:

• access to domain-specific elements and sequences: the
user is primarily a domain expert, thus expects certain
predefined elements (positions, movements, signals, etc)
without having to specify/create these themselves.

• to adjust these domain concepts, respectively extend and
combine them.

• to interact with arbitrary, unforeseen machinery.
• to combine domain-specific elements (see item 1) and

low-level language elements (see item 2) seamlessly.
• work on multiple levels of restricting customizability:

e.g., ability to expose/highlight dynamically created con-
figuration properties to allow program adjustments with-
out accidentally changing the robot’s behavior in an
unpredictable manner.

III. STUDY DESIGN

The objective of this study is to investigate the applicabil-
ity of block-based programming languages such as Blockly
for programming industrial robots. Our focus on real-world
programs from industry highlighted several requirements and
constraints that led to the following research questions. These
research questions have been derived from the requirements
and constraints for robot programming identified in the indus-
trial context (see II-C).

RQ-1) Implementation: Can complex real-world robot pro-
grams be expressed in Blockly and its toolbox? In order to
answer this research question we implement a representative,
large and complex robot program in Blockly. We analyze
if and to what extent all aspects of the semantics currently

provided by an implementation in EPL can be expressed ac-
cordingly and to what extend EPL’s toolbox can be replicated
in Blockly’s toolbox.

RQ-2) Readability and Understandability: How does
Blockly affect readability and understandability of robot pro-
grams? In the context of software, readability is generally
defined as a human judgment of how easy it is to understand
the code of a program [18]. Readability is a prerequisite for
understanding the code. The relationship between readability
and understandability is similar to the relation between the
syntax and semantic of a program; readability is affected by
syntactic aspects while understandability is linked to semantic
aspects [19].

RQ-3) Changeability: How does Blockly and EPL support
customization and adaptation of robot programs? The change-
ability of a software system is the ease with which it can be
modified to match changes in the requirements or the environ-
ment. Changeability includes the non-functional requirements
for adaptability, flexibility, modifiability and robustness [20].
Various measures (e.g., modularization, introducing adjustable
parameters, or design patterns) can be applied to reduce the
impact of changes and the corresponding effort. Many of these
measures are reflected in structural properties of a software
system [21].

A. Experiments

In order to answer the research questions, we performed
an experimental study in which we implemented a represen-
tative real-world robot program and corresponding toolbox in
Blockly. This program is a re-implementation of a large and
complex instance of a robot program that is actually used by
ENGEL and many of its customers. The generated toolbox
contains a comparable amount of domain specific program-
ming elements. Aside from comparing the program in EPL
and Blockly, we compare the steps taken when implementing
a realistic change.

B. Study Object: Robot Program

For our experiments we selected a large and complex EPL
robot program that is frequently used by ENGEL and at
customer production sites to control robots that collaborate
with injection molding machines. The program is applied when
a robot has to insert components into the mold – e.g., metal
reinforcements into plastic components – before picking and
placing solidified plastic parts.

The functionality and overall structure of a program in an
IMM production cell can be mapped to the following main
steps that together make up one production cycle:

1) Take insertion components. Depending on the number of
parts produced during a single run and the position of
the insertion components, the robot has to pick up each
component separately.

2) Pick solidified part from previous run. This step includes
moving safely towards (fragment shown in Fig. 3) and



Fig. 3. ENGEL Robot Program.

into the machinery area, avoiding collisions with obsta-
cles like tie-bars, and synchronizing with the opening of
the mold.

3) Insert components into mold. If it is impossible to insert
components while already holding parts, then this step
may also be placed at the end of a cycle.

4) Detach and dispose sprue after moving out of the ma-
chinery.

5) Place solidified parts. This step requires safe movement
of the object to the placement site. Parts are placed either
• at the indicated placement area (e.g. conveyor belt).
• at the quality inspection site, if an inspection of the

part was requested.
• in garbage, if part was detected as faulty, otherwise.

Fig. 3 shows a small fragment of this robot program in the
EPL notation. The entire program contains 170 EPL items in
total and has a cyclomatic complexity of 50 (32 conditional
branches and 18 parallel branches). The very high complexity
of the program results from four main reasons. First, the
program needs to distinguish between a first run where no
parts are ready to be picked and placed but only inserting
parts needs to be done (hence, skipping certain position and
rotations and waiting signals). Second, the program needs to
check for and react to failures in picking and releasing parts.
Third, the robot might be restarted in an unknown state from
a previous, aborted program run and potentially still have
parts on its grippers. Forth, the program comes with multiple
configuration and extension points to provide the flexibility
to adapt to the wide range of predefined insert-pick-and-place
scenarios without having to build these scenarios from scratch.

IV. EXPERIMENTS AND RESULTS

Re-implementing the selected robot program in Blockly
included two preparatory steps: Porting the EPL language

structures to Blockly and porting the EPL toolbox to Blockly.
We then implemented the program in Blockly and subse-
quently implemented the same change in EPL and in Blockly.
Note that in previous work [22] we briefly reported on the
effect of using Blockly on cyclomatic complexity and the use
of subroutines for structuring robot programs. That previous
work described in more detail the aspect of porting EPL to
Blockly which we describe to some extent in the following
section for sake of completeness. The focus in this paper
is on the aspect of integrating the program logic within a
complex production cell of multiple participants (i.e., focus
on the toolbox) as well as the customizability of the program.

A. Porting to Blockly

In this first step, the EPL source program was directly
mapped to Blockly concepts, i.e. all commands and control
structures were rewritten in Blockly syntax without any fur-
ther modification or optimization to obtain two semantically
equivalent languages that can use the same mapping to the
underlying execution language Teachtalk. Additional custom
blocks were defined as Blockly does not support all language
concepts of the EPL language out of the box, i.e., Parallel
branch, a Section element (to better structure code blocks),
and Section exit (to skip ahead). However, necessary language
extensions can be easily introduced due to the framework
character of Blockly.

The largest part of custom blocks is related to the domain
specific commands that are provided by EPL. These blocks in-
clude sending and waiting for signals, starting and waiting for
timers, specific robot commands (e.g., move robot to a certain
position, rotate robot’s wrist axes, suspend robot movement on
a signal, test if robot is at a certain position), special commands
for peripheral devices (e.g., activate/deactivate suction gripper,
check state of suction gripper).

A very obvious difference between EPL and Blockly is
how statement related information is presented to the user.
Blockly relies mainly on textual information and a puzzle-
like presentation of input arguments, whereas EPL combines
pictograms with complementary text. EPL has a large set of
pictograms in only two colors, which makes it hard to tell them
apart and quickly spot their meaning. As the additional text is
not always supportive either, so identifying the pictogram or
opening the property dialog (see II-C) is sometimes required
to fully understand the sequence.

Another interesting aspect is the difference in expressiveness
of both languages. Flow charts inherently focus on the control
flow of execution through statement sequences, but they have
no concept to visualize statement details, except of using
descriptive text. Hence, EPL has no notation to visualize
expressions, assignments (e.g., set number to 10), or arguments
of subroutine calls. To this end, EPL relies on a separate editor
that needs to be explicitly opened in a modal dialog. Blockly,
in contrast, provides an explicit graphical notation for such
concepts that seamless blends in with the regular control flow
(see Fig. 1).



Fig. 4. ENGEL Robot Program ported to Blockly (detail, clipped).

B. Porting the Toolbox

The EPL toolbox combines two orthogonal views. One view
consists of categories per domain subsystem such as the in-
jection moulding machine, the robot, periphery (incl. conveyor
belt), part arrangement options (i.e., how to place parts next
to each other or on top of each other on the conveyor belt),
reusable domain-specific sequences, and general structural
elements (e.g., if/else, wait, while, parallel statements). The
second view describes the “type” of variables: program switch
(i.e., configuration flags), user-defined flags, machine flags,
status flags, digital inputs/outputs, errors, current/expected
robot head positions, current/expected robot arm positions,
counters, and values (e.g., durations of cycles and movements).
The toolbox displays in a tree-view at the top level the domain
subsystem categories and below any available instances of the
variable types (within each category).

For building the Blockly toolbox, we reused the custom
blocks for each of the variable types (defined in the previous
subsection) and dynamically loaded the available instances of
these variables and their domain subsystem from a running
injection moulding cell via the cell’s API to its underlying
programming and runtime environment (more precisely, we
used a virtual twin for this purpose).

Doing so, we achieved a Blockly toolbox that mirrows
the same richness and structure as the EPL editor’s toolbox,
allowing for user experiments under comparable conditions.

C. Implementing a realistic change

In this section we compare EPL and Blockly in the task
of extending a default robot program to include an engraving
station. In our case study, the purpose of the engraving station
is to apply a unique identifier on a moulded part with a
laser. Whether parts should be engraved should be configurable
without having to edit the actual workflow (i.e., customization
at level 3). The new control logic consists of the following
coarse grained changes:

1) inserting a check whether engraving is enabled or should
be skipped

2) waiting until the engraving station is ready
3) placing the part and moving into a waiting position
4) notifying the engraving station that a part is provided
5) waiting for the engraving station to finish
6) picking up the engraved part and moving away
7) notifying the engraving station that the part has been

picked

Subsequently, the robot continues its sequence by placing
the part at the configured placement area (e.g., conveyor
belt). Engineers at ENGEL have confirmed that this scenario
represents a typical case of how ENGEL or their customers
would integrate external machines.

The changes involve a wide range of programming el-
ements: defining new configuration variables (and check-
ing them at runtime), waiting until signals arrive (typically
achieved by waiting for a Boolean flag to become true), mov-
ing to various position, de/activating part gripper or suction
cups, sending a signal to an external shopfloor participant
(again typically achieved by setting a Boolean flag to true),
executing parallel behavior (i.e., moving away and while doing
so signaling the completion of having picked or placed a part).

This scenario assumes that the engraving duration is suffi-
ciently short that the robot may finish placing the engraved
part at its placement location and is able to pick the next
produced part from the machine in time. If this is cannot be
guaranteed, additional logic would be necessary to pick up the
engraved part from the previous cycle, and only then place the
part for engraving from the current cycle. This again requires
to differentiate between the first cycle (when no previous part
is available) and subsequent cycles.

Extending this scenario, we investigated the steps necessary
when moving the complete graving procedure from only
occurring just before placing parts on the conveyor belt to now
also occurring before placing parts at the quality inspection site
(but not when the part is faulty and needs to be discarded).

Revisiting the levels and required abilities defined in Sec-
tion II-D, we notice that these changes occur at level 2
(i.e., additional customization is required for the precise part
being handled and configuration whether engraving should be
active). The changes include domain specific elements such as
the robot movements and part picking/placing aspects. Inter-
action with unknown machinery (i.e., the engraving station is
not a standard elements in an IMM cell and hence not part of



the domain specific vocabulary) occurs via setting of digital
input and output signals (the Boolean flags).

In the next section, we report on early results from a small
user study implementing the above described change.

D. Preliminary User study

We had one author, one research center employee, and one
Master student implement the above described change in EPL
as well as the same author and two Master students implement
it in Blockly. Neither involved participant is a domain expert
but obtained a basic introduction into EPL and Blockly. We
observed (via screen sharing) what the participants did, what
type of mistakes they made, and how long the individual steps
of implementing the various fine-granular steps took. This
setup is primarily intended to test useful evaluation tasks for a
larger user study and we treat the gained insights as anecdotal
evidence only. Consequently, we don’t report quantitative
numbers in this section but rather describe common participant
behavior in a qualitative manner. These observations are not
exhaustive due to the low number of participants.

Observations of using EPL:
• Finding the correct places to change a program requires

expanding most subsequences (from their collapsed de-
fault visualization). Participants often lost track where in
the overall robot program they currently are and needed
to collapse a significant amount of structure before diving
into details again.

• Participants miss-interpreted conditional statements. EPL
prints the textual description of an if-condition along
the horizontally diverging else-branch, thereby leading
participants to confuse the else-branch with the then-
branch.

• Participants often took considerable time choosing the
correct element from the toolbox. One potential reason
is that its not immediately clear for the programmer
whether an element (e.g., a signal or variable) exists in the
predefined toolbox or needs to be newly defined which
is then placed in a separate category (i.e., the “custom”
category). A potential second reason is that users were
not sure which type of variable (of the many listed in
Section IV-B) needs to be used in wait or conditional
statements.

• Some variables of similar name are provided by differ-
ent shopfloor participants. E.g., both IMM and disposal
station provide a similar named signal that the next
part should be discarded. Participants have difficulties to
assess which signal is the correct one, i.e., the one that
will be used at runtime.

• Conceptual mismatch of reading from a digital input
(which is a generic toolbox element) and writing to a
digital output (which is a custom element of the periphery
category). Such mismatches cause users to select the
wrong elements or spend considerable time searching.

Observations of using Blockly:
• Similar to EPL, users need to expand collapsed subse-

quences in Blockly. On the one hand, this lead to less

overload as all elements are strictly vertically layouted,
but expanding (and collapsing) subelements takes multi-
ple clicks (into an element’s context menu) as opposed to
EPL’s single-click activation of the “+” icon. This slows
down navigating in Blockly.

• In Blockly, the element for executing one or more com-
mands asynchronously with respect to the main control
flow (i.e., “without waiting for completion do [. . . ]”) is
placed above the main control flow (see Fig. 4 middle).
This makes it more difficult to “detect” parallel behavior
compared to EPL where such behavior is visualized as a
parallel, vertical branch that branches off from the main
control flow (see Fig. 3 left middle). In both languages,
however, the visualization makes it difficult to perceive,
which commands are then executed in parallel at exactly
the same time.

V. DISCUSSION

In this section we discuss our experiences and findings with
respect to the three research questions stated in Section III.

RQ-1) Can complex real-world robot programs be expressed
in Blockly and its toolbox?

In our experiments we show that with a few additional cus-
tom blocks it is possible to express real-world robot programs
in Blockly without notable drawbacks. Although concepts like
concurrency are not implicitly supported by the language, they
can be replicated by appropriate custom blocks.

RQ-2) How does Blockly affect readability and understand-
ability of robot programs?

Although similar in visual code size, we consider Blockly
more readable than EPL due to its use of text in favour
of icons, supported by colors. Nevertheless, more complex
programs with nested control structures tend to become clumsy
and confusing. In addition, complex expressions might blow
up the code and distract the user from the control flow itself,
causing more confusion. On the other hand, using the same
visual syntax for both, control flow and expressions flattens
the learning curve.

A non-negligible concern is representing the environment
in which the program (here the robot) is interacting with. The
environments complexity defines the amount of predefined
elements in the toolbox and hence affects the effort and
time a programmer needs to find and use desired elements.
Both Blockly and EPL, however, support simple copy/paste
commands to use variables and code sequences without having
to access the toolbox.

RQ-3) How does Blockly and EPL support customization of
robot programs?

When it comes to editing, Blockly’s puzzle-like, more
physical structure is advantageous. Block sequences can be
selected, copied and moved around easily. As the workspace
is two-dimensional, it is possible to deposit unused sequences
anywhere and reuse them later.



A note on language vs language environment

The ability to change a program is often not solely deter-
mined by the language but also by the language environment
(i.e., the respective editor) and often a combination of both.

A key difference we noticed between Blockly and EPL is
the ability to bring the program into a syntactically incom-
plete/incorrect state. First, Blockly allows moving groups of
connected elements out of the program flow and let them
“float” on the canvas (this is possible for every element type,
not just functions). EPL limits the programmer to cutting a set
of elements and inserting them at another position (effectively
a single slot clipboard). Elements also need to be inserted at
valid positions in the flow, leaving the program always in a
executable state. Second, Blockly allows statements to remain
incomplete (e.g., an assignment of a variable where the value
slot is left empty, or a comparison where the comparator is left
empty). In EPL, this is not possible, and even if the separate
pop out editor would allow this, a programmer would have
difficulty spotting missing values or constructs as EPL’s main
flow-chart view doesn’t reveal such details. In Blockly, empty
slots are easily detectable. Such a shortcoming is not specific
to EPL but to any flow-chart-centric language that is not well
suited to visualize conditions, assignments, and the like.

The downside of requiring always syntactically correct
programs is that it forces the programmer to “obey” to
the program, rather than following their mental model. For
example, when writing a condition expression, EPL requires
the programmer to already know which variables are relevant
as inspecting the program is not possible without closing the
condition editor (loosing all changes when the constraint is
not syntactically correct).

VI. CONCLUSION

In this paper we investigated Blockly, a block-based visual
programming language in terms of applicability for program-
ming industrial robots. Therefore, we ported a real-world robot
program from EPL, a flow-chart based visual language, to
Blockly and assessed different quality aspects like readabil-
ity, understandability, and customizability. Although Blockly
was invented to teach programming to beginners by simple
examples, our study shows that it is possible to express even
large and highly complex real-world robot programs with the
language concepts offered by the block-based language. We
found that visual code size and general clarity are comparable
to the EPL program, whereas adaptability is better.

The gained insights are based on anecdotal evidence from
a few observations. We, hence, plan to conduct a larger user
study to more quantitatively compare the time and amount
of errors participants make when implementing a change in
Blockly and EPL, respectively.

REFERENCES

[1] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry
4.0,” Business & information systems engineering, vol. 6, no. 4, pp.
239–242, 2014.

[2] G. Fragapane, D. Ivanov, M. Peron, F. Sgarbossa, and J. O. Strandhagen,
“Increasing flexibility and productivity in industry 4.0 production net-
works with autonomous mobile robots and smart intralogistics,” Annals
of Operations Research, pp. 1–19, 2020.

[3] R. Bischoff, A. Kazi, and M. Seyfarth, “The morpha style guide for
icon-based programming,” in Proc. 11th IEEE Intl. Workshop on Robot
and Human Interactive Communication. IEEE, 2002, pp. 482–487.

[4] C. J. Sutherland and B. A. MacDonald, “Naoblocks: A case study of
developing a children’s robot programming environment,” in 2018 15th
Intl. Conference on Ubiquitous Robots (UR). IEEE, 2018, pp. 431–436.

[5] J. M. R. Corral, I. Ruı́z-Rube, A. C. Balcells, J. M. Mota-Macı́as,
A. Morgado-Estévez, and J. M. Dodero, “A study on the suitability
of visual languages for non-expert robot programmers,” IEEE Access,
vol. 7, pp. 17 535–17 550, 2019.

[6] E. Coronado, F. Mastrogiovanni, and G. Venture, “Design of a human-
centered robot framework for end-user programming and applications,”
in ROMANSY 22–Robot Design, Dynamics and Control. Springer, 2019,
pp. 450–457.

[7] J. Blume, “iprogram: intuitive programming of an industrial hri cell,”
in 2013 8th ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE, 2013, pp. 85–86.

[8] D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd,
and D. Franklin, “Evaluating coblox: A comparative study of robotics
programming environments for adult novices,” in Proc. of the 2018 CHI
Conference on Human Factors in Computing Systems, 2018, pp. 1–12.

[9] N. Ritschel, V. Kovalenko, R. Holmes, R. Garcia, and D. C. Shepherd,
“Comparing block-based programming models for two-armed robots,”
IEEE Transactions on Software Engineering, pp. 1–1, 2020.

[10] D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak, “Learnable pro-
gramming: blocks and beyond,” Communications of the ACM, vol. 60,
no. 6, pp. 72–80, 2017.

[11] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
scratch programming language and environment,” ACM Transactions on
Computing Education (TOCE), vol. 10, no. 4, pp. 1–15, 2010.

[12] N. Fraser, “Ten things we’ve learned from Blockly,” in 2015 IEEE
Blocks and Beyond Workshop (Blocks and Beyond). IEEE, 2015, pp.
49–50.

[13] J. Trower and J. Gray, “Blockly language creation and applications:
Visual programming for media computation and bluetooth robotics
control,” in Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, 2015, pp. 5–5.

[14] D. Topalli and N. E. Cagiltay, “Improving programming skills in engi-
neering education through problem-based game projects with scratch,”
Computers & Education, vol. 120, pp. 64–74, 2018.

[15] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk, “Pro-
gramming by choice: urban youth learning programming with scratch,”
in Proceedings of the 39th SIGCSE technical symposium on Computer
science education, 2008, pp. 367–371.

[16] D. Weintrop, D. C. Shepherd, P. Francis, and D. Franklin, “Blockly goes
to work: Block-based programming for industrial robots,” in 2017 IEEE
Blocks and Beyond Workshop (B&B). IEEE, 2017, pp. 29–36.

[17] T. Ball, A. Chatra, P. de Halleux, S. Hodges, M. Moskal, and J. Russell,
“Microsoft makecode: embedded programming for education, in blocks
and typescript,” in Proceedings of the 2019 ACM SIGPLAN Symposium
on SPLASH-E, 2019, pp. 7–12.

[18] R. P. Buse and W. R. Weimer, “Learning a metric for code readability,”
IEEE Transactions on Software Engineering, vol. 36, no. 4, pp. 546–558,
2009.

[19] D. Posnett, A. Hindle, and P. Devanbu, “A simpler model of software
readability,” in Proceedings of the 8th working conference on mining
software repositories, 2011, pp. 73–82.

[20] K. M. Adams, “Adaptability, flexibility, modifiability and scalability,
and robustness,” in Nonfunctional Requirements in Systems Analysis and
Design. Springer, 2015, pp. 169–182.

[21] E. Arisholm, “Empirical assessment of the impact of structural properties
on the changeability of object-oriented software,” Information and
software technology, vol. 48, no. 11, pp. 1046–1055, 2006.

[22] M. Winterer, C. Salomon, J. Köberle, R. Ramler, and M. Schittengruber,
“An expert review on the applicability of Blockly for industrial robot
programming,” in 25th IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA 2020, Vienna, Austria,
September 8-11, 2020. IEEE, 2020, pp. 1231–1234.


