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Abstract—High-level deliberation in robotic systems has to
handle three different but closely interwoven aspects simultane-
ously: intended tasks, contingencies, and system-level errors. To
reduce the complexity, we propose the system modes concept,
to abstract runtime state information and reconfiguration of
the software components of the underlying layers by a model-
based approach. The proposed concept introduces a notion
of hierarchically composed, virtual subsystems as well as a
notion of modes that determine their configuration. It features
an inference engine to deduce the modes of the subsystems
from the components and top-down reconfiguration mechanisms.
Repetitive and fine-grained communication between high-level
deliberation and underlying software components can thereby be
reduced, decreasing unwanted coupling between system parts.

I. INTRODUCTION

Modern robotic software architectures follow a layered ap-
proach. The layer with the core algorithms for SLAM, motion
planning, navigation, object recognition, etc. is often referred
to as skill layer or functional layer. To perform a complex
task, these skills are orchestrated by one or more upper layers
often referred to as executive layer or task layer, possibly with
a planning layer or mission layer on top. In the following,
we use the term deliberation layer and do not consider any
substructure of this layer. We observe three aspects to be
handled on the deliberation layer:

1) Intended tasks: The straight-forward, error-free control
flow to achieve a goal or to accomplish a mission.

2) Contingencies: Handling of expectable contingencies in
the interaction with the real world such as blocked paths
in navigation, loss of localization, low battery, and poor
light conditions.

3) System-level errors: System-related errors and excep-
tions such as sensor failures, actuator dropouts, and
software component crashes.

These aspects are closely interwoven and have to be treated
simultaneously, which is a root cause for the complexity in
robot deliberation.

A key to reduce this complexity and to avoid complicacy is
to hide or abstract technical aspects of the skills and details
of their implementation in software components as far as
possible. The middleware mechanisms used in modern robotic
software frameworks play a vital role for such transparency
and abstraction. The deliberation layer can invoke services and
actions or communicate set values to the skills without any

Fig. 1. Deliberation layer interacting with the skills layer.

knowledge about the component structure. The same applies
to listening on feedback on long-running service calls or on
messages on events in the environment.

However, as illustrated in Fig. 1, there is a gap when it
comes to activating/deactivating of skill-level functions, their
parameterization, runtime states, and diagnostics. This applies
to the Robot Operating System (ROS) in particular, but also
to other robotic software frameworks.

The goal of the system modes concept is to close this gap
by providing suitable abstractions and framework functions
for (1.) system runtime configuration and (2.) system error
and contingency diagnosis. In detail, our contributions are:

• Requirements analysis: We report on the analysis of the
deliberation layer of an industrial robotics project and
derive requirements to the system modes concept.

• Concept: We propose a suitable concept based on the
runtime component lifecycle model of ROS 2, also known
as Managed Nodes.

• Implementation: We present an open-source implementa-
tion of the System Modes concept for ROS 2.

The remainder of this paper is structured as follows: We
discuss requirements in Sect. II and related work in Sect. III,
followed by the presentation of the System Modes concept
in Sect. IV and its implementation for ROS 2 in Sect. V. We
report on a practical evaluation with the ROS 2 Navigation
stack on a Tiago robot in Sect. VI, before concluding the paper
in Sect. VII.



II. REQUIREMENTS ANALYSIS

We analyzed the hierarchical task network developed in a
robotics project at Bosch as deliberation layer for an au-
tonomous intralogistics platform. In this project, a common
runtime lifecycle similar to the lifecycle proposed by the OMG
Robotic Technology Component Specification [1] had been
already defined for all software components of the system.
We discovered a couple of repeating patterns, including (1.)
activating/deactivating fixed subsets of the components, (2.)
handling errors or contingencies that affect dependent compo-
nents, (3.) reconfiguring multiple components simultaneously,
and (4.) reacting on failures during reconfiguration.

In close cooperation with the developers, we derived the
following requirements to the system modes concept to reduce
the complexity of the deliberation layer in general and the
occurrence of such repeating patterns in particular.

A. Model

• System hierarchy: The model shall allow defining subsys-
tems consisting of multiple components in a hierarchical
or at least two-staged manner.

• Runtime states: The model shall allow defining individual
states of each of these elements (subsystems, compo-
nents) and specifying the relation between them.

• Standard but extendable states: These states shall follow
a common standard for consistency and homogeneity
but shall at the same time be extendable to application-
specific needs.

• Error propagation: It shall be possible to model causal
dependencies between the elements of a subsystem and in
particular the propagation of errors. Sources of inspiration
are Component Fault Trees that allow a Fault Tree
Analysis for component-based systems [2].

• Timing/causality-aware switching between states: Two
common patterns in first step: (a) Reconfigure compo-
nents of a subsystem sequentially in a fixed order or (b)
reconfigure them simultaneously.

B. Implementation

• Textual model: The model should be well manageable
with standard version control systems.

• Transparency: The System Modes concept should be
transparent for the components, i.e. not require any
changes to existing (legacy) components.

• Compatibility: The APIs shall be compatible with exist-
ing component runtime lifecycle mechanisms.

C. Runtime

• Distribution: The System Modes approach shall support
distributed setups with multiple micro controllers or mi-
croprocessors.

• Tolerance to communication faults: The approach shall
support (limited) local error handling in case of commu-
nication faults between these devices.

• Introspectability: The states shall be introspectable for
developers, ideally with standard tools.

III. RELATED WORK

In the Architecture Analysis & Design Language (AADL),
a mode is defined as a ”visible operational state” of a
component with ”mode-specific properties and configurations
of subcomponents and connections that are active in specific
modes” [3][Ch. 7]. It further distinguishes between operational
modes and fault-tolerance modes. NASA’s Remote Agent [4]
proved that mission flexibility and resilience can be improved
by using declarative models of modes to reconfigure systems
for failure diagnosis and recovery. Continuation of that work,
successfully flying during a 17 years mission, confirms the
benefits of using explicit models for run-time configuration
and adaptation [5], explored in this work.

Hernández et al. [6] propose a self-adaptation framework,
modeling functional knowledge for augmented autonomy in
an ontology termed Teleological and Ontological Model for
Autonomous Systems (TOMASys). In TOMASys, Function
Designs model the potentially many different robot’s capabil-
ities that map to different Function Groundings that realize
these capabilities. The System Modes concept proposed in
this work is capable of serving as realization of Function
Groundings as demonstrated in Sect. VI.

Leng et al. [7] introduced the DyKnow framework with
similar concepts for ROS 1. DyKnow supports reconfigura-
tion by introducing so-called Transformation Specifications
that describe different usages of ROS 1 nodelets based on
different configurations. A managing component keeps track
of transformation specifications, in addition to instantiated
nodelets and their connections to allow knowledge based (self-
)adaptation in ROS-based robotic systems.

IV. SYSTEM MODES

In this section, we present the System Modes approach for the
introduced requirements.

A. Assumptions

We assume the system to be comprised of loosely-coupled –
potentially distributed – components with a runtime lifecycle,
hereinafter referred to as nodes. We call semantic grouping of
these nodes a system. We assume that these systems can again
be hierarchically grouped into further (sub-)systems (system-
of-systems). All nodes and systems that belong to a certain
system are referred to as parts of this system.

We further assume that nodes can be asked for their
current state and current parameter values. Target states
of nodes and systems can be known as well, either by
requesting those or caching according requests.

In a first stage of this concept, we assume that the entire
system is known and can be specified up-front. Later revisions
of this concept might have to take care of changing systems,
i.e. further nodes and/or systems joining at runtime.

B. Model

1) Hierarchical System Modeling: The System Modes ap-
proach adds a notion of systems, hierarchically grouping
these nodes, as well as a notion of modes that determine



Fig. 2. Modes are introduces as extensions to the lifecycle, i. e., specializa-
tions of the ACTIVE state.

the configuration of these nodes and systems in terms of
their parameter values.

The introduced notion of systems does not refer to a
concrete software entity, but rather a virtual abstraction that
allows efficient and consistent handling of node groups.

2) Lifecycle: For the sake of illustration, we assume that
nodes are ROS 2 Lifecycle Nodes. We then extend the ROS 2
default lifecycle by the following aspects:

• We introduce modes that are specializations of the
ACTIVE state, see Fig. 2.

• We additionally establish the same lifecycle for the
systems introduced above. Hence, all parts of a
system can be assumed to have the same lifecycle.

3) Modes: Concrete system modes (or simply: modes)
extend the ACTIVE state of the ROS 2 lifecycle and allow to
specify different configurations of nodes and systems:

• modes of nodes specify parameter values.
• modes of systems specify modes of their parts.

For example, a node representing an actuator might provide
different modes that specify certain maximum speed or
maximum torque values. An actuation sub-system, group-
ing several actuator nodes, might provide modes that
activate/deactivate certain contained actuator nodes and/or
change their modes based on its own modes.

C. Mode Inference

Since the introduced systems are not concrete software
entities, their state and mode has to be inferred from the
states and modes of their parts according to the model.
This inference mechanism is part of the system modes library
and is used by the mode manager and mode monitor. System
states and modes can be deterministically inferred under
the following conditions:

Fig. 3. Mode inference and mode management based on the system modes
and hierarchy file (SMH). Mode inference happens bottom-up based on current
node parametrization, mode changes are applied top-down, resulting in node
lifecycle and parameter changes.

• Nodes can be asked for their state, mode, and
parameters.1

• Target states and modes are known. Before attempting a
state or mode change for a system or node, the mode
manager publishes information about the request.2

We used the SCODE-ANALYZER [8] to verify that these rules
are complete and consistent, thus resulting in an unambiguous
mode inference.

Fig. 3 shows an example, where parameters of nodes
are observed and the according modes of these nodes can
be inferred. This is true for exact matches of parameter
values as well as parameter ranges, if these don’t render
mode specifications ambiguous. Based on the inferred modes
of the nodes, the modes of the systems can be inferred.

D. Mode Management

While the mode inference allows to infer the current actual
state of the system, mode management allows to manage and
change the system state. To be able to work with standard
components as much as possible, per our requirements (Sect.
II), we don’t require nodes to know about system modes, i. e.,
nodes don’t need to know their modes and provide according
mode change services.

Instead, a mode management instance maintains the model
of the system and its modes based on the SMH file and
manages nodes for all specified systems and nodes. As
depicted in Fig. 3, if the system is changed into a certain
mode, the mode management will i) first set the modes of
the sub-systems accordingly, then ii) set set the modes of
the nodes accordingly, and last iii) set parameters of the
nodes in accordance to these.

1True for ROS 2, since lifecycle nodes provide the according lifecycle
service and the mode manager provides the according mode service.

2In ROS 2, the according topics might need to be latched in order to allow
nodes to do the inference after joining a running system.



Fig. 4. Screenshot of the mode monitor, showing the observed resp. inferred
(see asterisk (*)) modes of one system and its two parts (nodes).

E. Error Handling and Rules

In case of contingencies or system errors, recovery strategies
are often similar: if a component crashes, either a restart of the
component is attempted or the system is put into a degraded
mode, which can operate without the crashed component or
failed sensor/actuator.

Mode inference and mode management allow to detect
and react to these situations under the conditions stated in
Sect. IV-C. We propose a simple syntax to specify common
reactions: If the actual state/mode of the system or any of
its parts diverges from the target state/mode, we define rules
that try to bring the system back to a valid target state/mode,
e.g., a degraded mode. Rules work in a bottom-up manner,
i.e. starting from correcting nodes before sub-systems before
systems. Rules are basically defined in the following way:
if:
system.target == {target state/mode} &&
system.actual != {target state/mode} &&
part.actual == {specific state/mode}

then:
system.target := {specific state/mode}

If the actual state/mode and target state/mode diverge, but there
is no rule for this exact situation, the mode management will
just try to return the system/part to its target state/mode.

This simple rule set allows reactions bottom-up reactions
and recoveries from low-level system failures, e. g., sensor
failure leading to degraded mode of the perception systems
leading to slow mode of the entire system.

V. IMPLEMENTATION AND AVAILABILITY

A first version of the system modes concept was implemented
in C++ and is available for ROS 2. While the algorithmic
core of the system modes is not ROS-specific, the library
uses software concepts and data structures provided by ROS 2,
introducing a software dependency to ROS 2. The system
modes implementation consists of three main parts: the core
library, a mode monitor, and a mode manager.

A. System Modes Library

The library consists of the mode inference mechanism, as well
as basic mode management and mode monitoring capabilities.
It relies on the software concepts and data structures provided
by ROS 2, introducing a dependency to ROS 2, but its algo-
rithmic core is not ROS-specific.

Both, the system hierarchy as well as the system modes are
specified in a System Modes and Hierarchy (SMH) model file
(yaml format) that is parsed by the mode inference.

The SMH file adheres to the following format, curly brack-
ets indicating placeholders, square brackets indicating optional
parts, ellipsis indicating repeatability (shown without error
handling rules for the sake of brevity):
{system}:
type: system
parts:
{node}
[...]

modes:
__DEFAULT__:
{node}: {state}[.{MODE}]
[...]

{MODE}:
{node}: {state}[.{MODE}]
[...]

[...]
[...]

{node}:
type: node
modes:
__DEFAULT__:
{parameter}: {value}
[...]

{MODE}:
{parameter}: {value}
[...]

[...]
[...]

In this model, each node is specified with its named modes.
Each mode of a node is defined by a concrete node config-
uration, i. e., a set of parameter values. A node can have an
unlimited number of modes.

Additionally, an arbitrary number of named systems can be
defined, each defined with a list of its parts (other systems
or nodes) and its named modes. Each mode of a system is
defined by the configuration of its parts, i. e., a set of target
state/mode pairs of its parts.

The SMH file can be conveniently generated by the MROS
modeling tool to specify reconfigurable skills in ROS [9].

B. Mode Monitor

The mode monitor is realized as a ROS 2 node, including the
mode inference, observing relevant topics, and providing a
visual overview of the system and its modes, shown in Fig. 4.

The mode monitor subscribes to all state change topics,
mode change topics, and parameter change topics of all
systems and nodes modeled in the SMH file. Information
gathered from these topics are handed to the mode inference,
which maintains a consistent, up-to-date model of the current
system state. The mode monitor additionally provides a simple
user interface to inspect this current state.

C. Mode Manager

The mode manager is realized as a ROS 2 node, including the
mode inference and providing services to manage the extended
lifecycle. It subscribes to the same topic as the mode monitor
to maintain a consistent, up-to-date model of the current
system state based on the mode inference. It additionally
provides the following services for the extended lifecycle of
all systems and nodes from the SMH file:

1) Lifecycle services (get state, get available states, change
state) for all systems from the SMH file. It thereby



exposes the same lifecycle interface for systems that
standard ROS 2 nodes expose.

2) Mode services (get mode, get available modes, change
mode) for all systems and nodes from the SMH file.

By providing the standard ROS 2 lifecycle services for systems
and providing the same mode service for systems and nodes,
we expose the exact same extended lifecycle interface for
systems and nodes, providing a consistent abstraction for the
deliberation layer. I. e., the deliberation layer configures a skill,
it no longer needs to know if it is implemented by a node or
a system of nodes.

D. Packaging and Availability

System modes are available in the ROS 2 system_modes3

package, complemented by an examples package
(system_modes_examples). It was developed in the
context of micro-ROS,4 where it is integrated with a C-based
implementation of the ROS 2 lifecycle5 for microcontrollers.

VI. CASE STUDIES AND METACONTROL

Apart from their usage in the micro-ROS project, integration
of System Modes with an ontology-based control framework
called metacontrol [6] was successfully demonstrated in the
course of the MROS project.6 System Modes were evaluated
in two case studies: a mobile robot navigation scenario as well
as a Bosch consumer robot prototype (undisclosed).

A. Scenario

Fig. 5 shows the software architecture of the first scenario
software architecture, composed of the following elements:

• At the Mission level, a behavior tree is used to command
the robot to navigate various waypoints sequentially. In
MROS, the mission level does not directly send the
navigation action to the level that implements the nav-
igation skill, but instead an intermediate element called
MetaController. This action contains the desired quality
of service for the task.

• The MetaController receives the action and forwards it
to the navigation level, extracting the required quality of
service. This level contains a reasoner, which establishes
an appropriate system configuration depending on the
required quality of service, observation of the system’s
state, and further factors.

• The navigation level uses Nav2 [10], the ROS 2 nav-
igation system. The bt_navigator orchestrates the
navigation process, asking the Planner to generate a route
to the waypoint, sending the route to the controller to
send the speed commands to the robot, and asking the
Recovery Server to act in case of errors or contingencies.
AMCL implements localization on the map.

• Nav2 requires information from a Laser to locate and
avoid obstacles. This reading can be provided by a laser,

3https://github.com/micro-ROS/system modes
4https://micro-ros.github.io/docs/concepts/client library/system modes/
5https://github.com/micro-ROS/rclc/tree/master/rclc lifecycle
6MROS - Metacontrol for ROS 2 systems: https://robmosys.eu/mros/
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Fig. 5. MROS Pilot architecture.

which offers a 360o range. Alternatively as a fall-back,
a virtual laser reading can be obtained by processing the
information from an RGBD Camera with a 58o range.

B. System Modes and Contingencies

In the evaluated scenario, two contingencies could occur that
the MetaController solves by requesting system reconfigura-
tion through a change of modes. Fig. 6 shows the available
modes of the system, Fig. 7 shows the available modes
of the nodes with their respective parameter values. The
contingencies handled based on these modes are:

• Battery low: When the battery level is low, the Meta-
Controller requests that the energy_saving_mode is
activated. This mode slows the robot down (see Fig. 7)
via controller parameterization and uses a behavior tree
to navigate. In addition, it raises a battery status warning
and informs the mission level about alternative plans, like
aborting the itinerary and navigate to a recharge point.

• Laser failure: If the laser fails, the MetaController
requests that the degraded_mode is activated. This
mode activates the node that processes virtual laser
readings from the RGBD camera. As the range of read-
ings is narrower, the robot’s speed must decrease to avoid
encountering obstacles during turns. Also, being less
precise than the laser, AMCL parameters are reconfigured
to rely more on odometry than the laser perception.

In addition to these contingencies, further system configura-
tions are associated with the quality of service that may be
required from the mission level.

https://github.com/micro-ROS/system_modes
https://micro-ros.github.io/docs/concepts/client_library/system_modes/
https://github.com/micro-ROS/rclc/tree/master/rclc_lifecycle
https://robmosys.eu/mros/
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Fig. 6. System modes of the presented case-study. Green boxes indicate
nodes in their ACTIVE state.
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Fig. 7. System modes of the involved nodes with their respective parameter
values.

C. Results

The presented scenario demonstrates System Modes’ capabil-
ity to adapt a system to contingencies and quality of service by
allowing a reconfiguration of the system at runtime, including
the activation or deactivation of nodes. Fig. 8 shows the
evaluation carried out on a professional Tiago robot7.

VII. CONCLUSIONS

The proposed System Modes concept provide abstractions for
system runtime (re-)configuration and system errors on the
same level of granularity as usually available for service and
action calls. It thereby reduces repetitive and fine-grained com-
munication between high-level deliberation and underlying
software components, decreasing unwanted coupling between
system parts. An implementation of the concept is available
as open-source ROS 2 package (Apache License, Version 2.0),
successfully demonstrated in two case-studies on real robots.

7https://www.youtube.com/watch?v=j67xXNIdRkQ

Fig. 8. Laser failure contingency scenario demonstrated on a real robot.

VIII. DATA AVAILABILITY

The ROS 2-based source code for the mobile robot navigation
case study discussed in Sect. VI is publicly available for repli-
cation, tagged with ’rose2021’ in the following repositories:

• https://github.com/MROS-RobMoSys-ITP/Pilot-URJC
• https://github.com/micro-ros/system modes
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