
A Modeling Tool for Reconfigurable Skills in ROS
Darko Bozhinoski∗ , Esther Aguado† , Mario Garzon Oviedo∗ ,

Carlos Hernandez ∗ , Ricardo Sanz † , Andrzej Wąsowski ‡

∗Cognitive Robotics, TU Delft
†Universidad Politécnica de Madrid, Centre for Automation and Robotics

‡Software Quality Research, IT University of Copenhagen

Abstract—Known attempts to build autonomous robots rely on
complex control architectures, often implemented with the Robot
Operating System platform (ROS). The implementation of adapt-
able architectures is very often ad hoc, quickly gets cumbersome
and expensive. Reusable solutions that support complex, runtime
reasoning for robot adaptation have been seen in the adoption of
ontologies. While the usage of ontologies significantly increases
system reuse and maintainability, it requires additional effort
from the application developers to translate requirements into
formal rules that can be used by an ontological reasoner. In this
paper, we present a design tool that facilitates the specification
of reconfigurable robot skills. Based on the specified skills, we
generate corresponding runtime models for self-adaptation that
can be directly deployed to a running robot that uses a reasoning
approach based on ontologies. We demonstrate the applicability
of the tool in a real robot performing a patrolling mission at a
university campus.

Robots are expected to perform complex tasks au-
tonomously, in dynamic environments under uncertainties that
may influence execution. Known attempts to build autonomous
robots rely on complex control architectures, often imple-
mented on top of the Robot Operating System (ROS). Cur-
rent designs for the deliberative layer are typically based on
complex, distributed logic that requires application developers
to be able to handle task coordination, contingency handling
and system management. Most ROS robot software archi-
tectures follow a modular layered approach, where many of
the components are standard libraries or software packages
that can easily be reused. An example of that is the System
Modes [1] library, which allows system architects to organize
the deployment artifacts of the robot software architecture in
(sub-)systems, hierarchically grouping ROS nodes into runtime
modes to facilitate runtime configuration. However, while
libraries like System Modes are an effective solution to deploy
and configure the status of ROS nodes in use, it does not
support complex runtime reasoning.

Robotics engineers need a reusable and maintainable de-
sign to support complex, runtime reasoning for robot self-
adaptation, addressing contingencies and system management.
This is especially important in safety-critical or mission-
critical robotic systems where architectures and implementa-
tion artifacts undergo diligent quality and safety checks, and
have to be maintained for extended periods of time. We have
proposed the Metacontrol framework [2] to support runtime
self-adaptation, this framework uses ontologies in order to
represent and reason with runtime architectural models.

By using ontologies, it is possible to address most of the
aforementioned challenges. They provide a formal naming and
definition of concepts, properties and relationships to share
a common knowledge of a domain. This contributes to a
common understanding of complex phenomena in compound
systems such as reconfiguration for mission completion. An
example of this approach implemented in a group of robots
sharing information can be found in [3].

The use of ontologies significantly increases code reuse and
maintainability, as it separates and standardizes knowledge
representation and reasoning from the rest of the system.
Unfortunately, it also incurs a considerable cognitive cost for
the developers, who need to formalize requirements into rules
for a reasoner. To address this issue, we develop a language
that allows a system architect to specify the architecture
through the concept of a robot skill, which is then translated
using model-to-model transformations into runtime models
that can be directly deployed to a running robot. In this
paper, we present a design tool that allows system architects
to specify robot skills in a high level of abstraction. Based on
the skills, we generate models for self-adaptation that are used
by the Metacontrol framework to perform runtime reasoning.

In Section I, we introduce the Metacontrol framework and
we illustrate the context for the tool. Section II, presents
the tool, including a language to describe robot skills and
the model-to-model transformations to generate the runtime
models. Section III demonstrates the applicability of the lan-
guage in a robot case study. Finally, Section IV discusses the
technical aspects of the tool.

I. METACONTROL FRAMEWORK

To develop self-adaptive solutions for robot software based
on ROS we have created MROS2 (Metacontrol for ROS2
systems). MROS2 is based on three main components: i)
The Metacontrol framework[4], which defines an architecture
for self-adaptation at runtime based on models, ii) The Rob-
MoSys1 framework, which defines meta-models for robotic
architectures, and iii) the System Modes concept [1], which
provides abstractions for runtime system configuration and
diagnosis in ROS2 systems.

The Metacontrol framework is the integrating component,
it involves using the design-time architectural model of the

1https://robmosys.eu/wiki/

https://orcid.org/0000-0002-6853-0310
https://orcid.org/0000-0002-7860-9030
https://orcid.org/0000-0001-6672-4827
https://orcid.org/0000-0001-6094-4917
https://orcid.org/0000-0002-2381-933X
https://orcid.org/0000-0003-0532-2685
https://robmosys.eu/wiki/

MROS2 Tool
Metacontroller

System Architect

 mros_reasoner

KBSHM
 Mode Manager

MROS Ontology

MROS metamodel

conforms

MROS Language

conforms

Architecture
Model

conforms

transformations

 Mission Coordinator

ROS2 Navigation

Task + QoS

KB

app.owl

shm.yml

System Modes

M2M
mros2owl
mros2shm

Design time Run time

conforms

RobMoSys metamodel

Fig. 1. Design Tool Overview

system to drive self-adaptation at runtime. This is achieved
by defining two main elements: i) a platform and domain-
independent metamodel, named Teleological and Ontolog-
ical Model for Autonomous Systems (TOMASys), which
models architectural variants in component-based systems,
and includes semantics for architectural adaptation; and ii)
the Metacontroller reference architecture for self-adaptation,
which integrates ontological reasoning in a MAPE-K loop [2]
to perform architecture analysis and adaptation decisions using
the aforementioned metamodel.

In MROS2 we have mapped the architectural concepts in
TOMASys to the ROS2 platform by creating a clear separation
of the terminological part and general rules, the domain-
specific knowledge of navigation concepts based on ROS2,
and finally a set of application-specific individuals that model
the functional and physical (component) architecture of the
system. This structure for the knowledge base allows the reuse
of both the ontology and the navigation-domain individuals.
Further detail on the knowledge base structure can be found
at [5]. The tool we developed allows users of the framework
to leverage that knowledge without the necessity of mastering
an additional, complex language.

To deploy a given configuration or to perform a reconfigu-
ration, the Metacontrol framework uses the concept of System
Modes. The System Modes extends the ROS2 node lifecy-
cle concept2 with the notion of (sub-)systems, hierarchically
grouping nodes, as well as the notion of modes, to model
architectural variants as different ROS2 node configurations.
While System Modes are an effective solution to deploy
and configure the status of the ROS2 nodes, it does not
support complex runtime reasoning to relate the System Modes
to the system task at runtime. For this, we have adapted
the RobMoSys Skill metamodel and integrated it with the
Metacontrol framework.

II. MROS DESIGN TOOL

In this section, we present an overview of the MROS2
design tool3 to support the Metacontrol framework (Figure 1).
It consists of: (i) a library of Skill definitions for navigation,
(ii) the MROS Language and (iii) MROS transformations
to runtime models for self-adaptation that can be directly
deployed to a robot. System architects are the end-users of

2https://design.ros2.org/articles/node_lifecycle.html
3https://github.com/MROS-RobMoSys-ITP/metacontrol_tooling

the tool. They can easily specify a robot system through a set
of skill variants.

Domain-specific libraries facilitate the application of the
Metacontrol framework to an application domain. We devel-
oped a library of Skill definitions for navigation, conformant to
the MROS language and consistent with the ontologies in the
Metacontrol framework. To extend the usage of skills beyond
the navigation domain, other libraries need to be developed.
Initially, a domain expert develops a set of conceptual rules
for a domain, which are then encoded in an ontological form.

During the requirements phase, a system architect decides
which skills should be used for the robot to be able to perform
its tasks. He defines an architectural model of the application
(Architecture Model in Fig. 1) using the MROS language.
The language reduces the complexity of the application de-
velopment process by minimizing the logical gap between the
requirements specification and the system architecture.

Finally, the MROS transformations take as input the ar-
chitecture model and automatically generate three runtime
models that are used by the Metacontroller: the application-
specific individuals (part of the ontology) used by the reasoner,
the System Modes file (.yaml) used to deploy a suitable
configuration at runtime and the observed components file
(.yaml) used to monitor the status of the components at
runtime.

A. MROS Language

The MROS Language is based on the MROS metamodel
which is strongly aligned with the RobMoSys Metamodel4.
In this context, for a Task to be executed, the robot needs to
possess a certain set of skills. The language follows the con-
ceptual decomposition of Skills in the RobMoSys Metamodel,
which separates the specification of skill definitions with their
corresponding skill realizations. In this direction, the MROS
language has two main elements: (i) constructs to specify
predefined skill definitions that are generic and platform-
independent and (ii) skill realizations that are platform-specific
elements (see Figure 2 for more details). The language was de-
veloped using the open-source Xtext5 framework for domain-
specific languages.

Conceptually, we link the concept of a Task that the robot
needs to perform with the concept of a SkillDefinitionSet.

4https://robmosys.eu/wiki/modeling:metamodels:start
5https://www.eclipse.org/Xtext/

https://www.eclipse.org/Xtext/

SkillDefinitionSet is the root language construct that consists
of a number of SkillDefinitions - a set of functional system
requirements that define what the system must be able to do.
A SkillDefinition is characterized by a list of quality attributes
relevant for the skill, optional input (InAttribute) and output
(OutAttribute) attributes that depict the Skill dataflow and a
result (SkillResult), which models the possible progress a skill
can have at runtime (Figure 2(a)). The tool allows the architect
to classify the progress of a Skill by categorizing results into
one of the following: INPROGRESS, SUCCESS or ERROR.

It is important to note that MROS allows architects to model
various SkillRealizations for each Skill. In this context, the
system developer needs to provide ROS2 implementation of
the skill realization. We define SkillRealization through: (i)
the concept of a deployed system configuration (SystemMode);
(ii) QA Model - a concept that provides information about the
expected quality of a realization; (iii) Context - a concept that
provides information about the settings in which the skill is
realized.

A SystemMode is a concept that refers to a system config-
uration that can be deployed at runtime. It is a preexisting
concept that comes from the integration of the System Modes
library in the Metacontrol framework. It consists of a set
of Components that can be realized as ROS2 nodes. Each
Component is specified through a set of configurations where
each Configuration has a number of properties (Figure 2(b)).
To monitor a component during a mission execution, a tag
observable should be assigned to it. This tag distinguishes the
components that are subject to observation by the reasoner for
adaptation. We consider that a component is observable if it
satisfies the following requirements: (i) at each point of time,
there is a clear separation between component states that corre-
spond to failure, normal functioning and recovery; and (ii) the
component provides an interface to detect failures/recoveries
and trigger corresponding transitions.

Finally, a QA model is the quality performing a task
expected from a skill realization. A Skill realization can
contain a specification of a number of QA models (e.g. safety,
performance etc.). Finally, a skill can be realized in different
Contexts. It is important to specify a default value for the
Context that corresponds to the normal system operation.

1) Language Guidelines: In this section we present
guidelines on how to use the language. To monitor a
component with an observer at runtime and instantiate it in
the ontology, the system architect should assign the component
a tag observable. Furthermore, in the MROS language, the
concept of a component Configuration corresponds to the
concept of a component Mode in System Modes [1]. Hence,
the name of each configuration should be aligned to the
ROS2 node lifecycle. Concretely, the name of a component
Configuration must correspond to a state in the ROS2 node
lifecycle (inactive, unconfigured, finalized,
configuring, cleaningup, shuttingdown,
activating, deactivating, errorprocessing),
except when that state is active. In this case, the naming
convention for a configuration is active.*, where * can

be an arbitrary chosen name that corresponds to a mode.
Finally, it is important to note that each quality model

(QA Model) in the Skill Realization should have a predefined
type. The type must be listed in the Skill Definition quality
attributes list. For example, if safety is not listed in the
quality attributes of the skill definition, a corresponding skill
realization can not have a quality model of type safety. This
is why a system architect needs to provide an exhaustive list
of quality attributes relevant for each skill definition.

B. MROS Model-to-Model transformations (M2M)

Using Model-to-model transformation techniques from the
MROS2 system Architecture Model, we automatically gener-
ate three runtime models that can be directly deployed to a
running system: the application-specific individuals deployed
in the ontological Knowledge Base (KB), the System Modes
file (.yaml) deployed in the System Modes library and the
observed components file (.yaml) deployed in the system
observers.

1) Application-specific individuals (KB): The application-
specific individuals are part of the Metacontroller Knowledge
Base, which is a runtime model specified in OWL. It consists
of the following elements:

• Components: information on which running components
influence the availability of skill realizations (function
designs).

• Function Designs: Conceptually, it is equivalent to the
definition of a skill realization. It contains information
about the skill that is realizing and the expected quality.

• Expected quality: a concrete value of a quality attribute
for a specific function design.

2) System modes: The System Modes file is a runtime
model specified in .yaml format and consists of the following
elements:

• System structure: contains the components (parts) that
compromise the system

• System Modes: definition of the modes on a system level.
Each system mode is defined through a set of components
and their corresponding component modes.

• Component modes: definition of modes of the individual
components. Component modes are defined through an
assignment of different values to the corresponding com-
ponent parameters.

3) Observed Components: An observer in the MROS
framework needs information on components that should be
monitored at runtime. As the last artifact that is generated
through model-to-model transformation is a list of components
defined in a .yaml file. This information is used to check for
possible failures in the components of a running system.

III. DEMONSTRATION

To demonstrate the applicability of the language, we eval-
uated it in two case studies: a mobile robot that patrols the
corridors of a university campus and an industrial consumer
robot prototype (undisclosed). In this section, we focus on the

(a) Skill Definitions (b) A Skill Realization

Fig. 2. An example of skill definitions and a realization used in a mobile robot navigation scenario

architectural model for the robot that patrols the corridors at a
university campus. The robot has to reach different locations,
where each location corresponds to a different Task.

In this scenario, the architectural model of the robot consists
of one SkillDefinition toNavigate. This SkillDefinition is im-
plemented through 6 different SkillRealizations that differ in
terms of the expected quality for three quality attributes: safety,
performance and energy-efficiency. Each SkillRealization cor-
responds to a system variant that can be deployed at runtime.
An example of a Skill Realization for toNavigate that has
low performance and high safety is presented in Figure 2(b).
The QA Models for each SkillRealization estimate the average
score of an expected quality normalized in 0-1 range. In this
demo, the safety level estimates the distance to obstacles,
the performance level estimates the time to completion, and
finally the energy level estimates the power needed to perform
navigation in the selected configuration. The MROS2 tool
automatically generates the 3 runtime models (Sect. II-B)
ready for deployment in a running system: system modes file,
application-specific individuals, observed components file.

While the robot performs the patrol, different contingencies
might occur (e.g. laser errors, empty battery, reduced safety
etc.). The Metacontroller observes the contingency type (if a
component is broken or a quality attribute is violated) and
selects a new configuration suitable for the current context.

IV. TECHNICAL CHARACTERISTICS

Our tool aims to facilitate the specification of the system
architecture. The Metacontrol framework (Sect. I) manages
the knowledge base at three levels. The two top levels, the
terminological and the domain-specific knowledge, are loaded
as libraries, while the third level, the application-dependent
ontology is output by our tool. This ontology could alterna-
tively be created in any GUI-based tool like Protégé6. We

6https://protege.stanford.edu/

reflect briefly on the difference in complexity of this alternative
process to code directly the Metacontroller KB using ontology
tools and our process using the MROS2 Tool, considering the
effort required by a system architect implementing a meta-
controller for a particular application.

In the navigation case study, we add eight object property
assertions, three data property assertions, and four class
assertions per each skill realization. Thus when an architect
provides a design alternative for a skill, 15 relationships in
Protégé would be created. If the designer prefers to edit the
OWL XML file directly, 20 lines are needed per each skill
realization. As the language is complex, these lines are added
in several parts of the document. Our tool simplifies this task
for systems architects dramatically. It allows the designer to
add a skill realization using five lines of code, in a compact
human-readable notation. Arguably, our language is also much
easier to learn than the OWL language.

Acknowledgment: This work was supported by the
RobMoSys-ITP-MROS (Grant Agreement No. 732410)
project with funding from the European Union’s Horizon
2020 research and innovation programme. Darko Bozhinoski
acknowledges the support from the Belgian F.R.S.-FNRS.

REFERENCES

[1] A. Nordmann, R. Lange, and F. M. Rico, “System modes – digestible
system (re-)configuration for robotics.” submitted to the 3rd International
Workshop on Robotics Software Engineering, RoSE.

[2] C. H. Corbato, D. Bozhinoski, M. G. Oviedo, G. van der Hoorn,
N. H. Garcia, H. Deshpande, J. Tjerngren, and A. Wasowski, “Mros:
Runtime adaptation for robot control architectures,” arXiv preprint
arXiv:2010.09145, 2020.

[3] S. Niemczyk and K. Geihs, “Adaptive run-time models for groups of
autonomous robots,” in 2015 IEEE/ACM 10th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, 2015.

[4] C. Hernández, J. Bermejo-Alonso, and R. Sanz, “A self-adaptation
framework based on functional knowledge for augmented autonomy in
robots,” Integrated Computer-Aided Engineering, vol. 25, no. 2, 2018.

[5] E. Aguado, Z. Milosevic, C. Hernández, R. Sanz, M. Garzon, D. Bozhi-
noski, and C. Rossi, “Functional self-awareness and metacontrol for
underwater robot autonomy,” Sensors, vol. 21, no. 4, 2021.

https://protege.stanford.edu/

	Metacontrol Framework
	MROS Design Tool
	MROS Language
	Language Guidelines

	MROS Model-to-Model transformations (M2M)
	Application-specific individuals (KB)
	System modes
	Observed Components

	Demonstration
	Technical Characteristics
	References

