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Abstract—Assembling robotic multi-agent systems is becoming
increasingly attractive due to the emergence of affordable robots.
For coordinated missions such fleets usually have to communicate
over unreliable channels and still achieve adequate performance.
To support system designers in quantifying adequateness, in
this paper we present a domain-specific language (DSL) that
allows domain-experts to specify (i) quality of service (QoS)
requirements of the communication channels; and (ii) QoS
capabilities of the involved software components. Such QoS
specifications complement the QoS management that has recently
been introduced into ROS 2. To fully utilize this approach we
have also developed an associated ROS 2 DSL which enables us
to verify QoS specifications and provide feedback to the users
already at design time. We have evaluated the developed language
workbench following the Goal-Question-Metric (GQM) approach
which demonstrates that the QoS DSL is complete with respect
to ROS 2 and can be easily extended. Additionally, we generate
a proof-of-concept implementation for a QoS monitor that can
be seamlessly integrated into existing ROS 2 projects.

I. INTRODUCTION

With the recent availability of low-cost, robust and commer-
cial off-the-shelf robots such as unmanned aerial or ground
vehicles it has become more attractive to assemble homo-
geneous or heterogeneous fleets of such robots. To achieve
collaborative mission goals, the involved agents usually re-
quire mutual, intra-fleet communication. However, since the
communication channels are usually established over the air,
they are inherently unreliable and their quality changes over
time. To let the robots’ software cope with those challenges,
designers introduce QoS management and configuration which
enables the robots to autonomously (i) monitor the quality
of communication channels; (ii) prioritize data streams; or
(iii) reconfigure the producers and consumers, for instance,
by compressing data. While those steps occur at the robots’
runtime, they still rely on a design-time specification of the
logical communication channels’ requirements towards the
physical network, e.g. the maximum tolerable delay, as well as
the capabilities of the communicating end point, for instance,
their buffer sizes.

The above description hints at two complementary views.
First, the specification of QoS profiles and second, their appli-
cation to a concrete communication framework. For the latter,
we rely on established component-based software frameworks
that have emerged as the de facto standard approach for
implementing robotic software systems [1], [2]. Here, the
components’ implementation is agnostic about the commu-

nication middleware. One of the most popular frameworks is
the Robot Operating System (ROS) [3] which targets multi-
robot systems as those outlined above with its recent major
upgrade named ROS 2. Due to its omnipresence in robotics
software development, we have also chosen ROS 2 as the
target platform in this paper.

Even if robotic software frameworks (RSF) have greatly
contributed to managing the inherent complexity in robotic
software systems, the development of robotic applications
remains a complex and challenging task. One reason is that
software component development and composition are only
two — though important — of the many relevant domains in
robots. Amongst the others one finds hardware design, control,
kinematics or dynamics. Hence, robots are often developed
by multidisciplinary teams of multiple members, each with
possibly many development roles. From these circumstances
many challenges arise, commonly leading to development
mistakes and oversights, that cost time and effort to find and
correct. Following fields such as the aviation or automotive
industries, robotic developers have recently adopted model-
driven methods and techniques to address such oversights.
Here, models are first-class citizen that represents various
views on a real system for documentation, analysis, verifi-
cation or validation. In software engineering, another benefit
is the transformation of models into software artifacts, ranging
from individual configuration files to full code bases [4].

Related to models are (i) meta-models that define the avail-
able, yet abstract, concepts and constraints to create concrete
models; as well as (ii) domain-specific languages (DSL) —
concrete representations of meta-models, for example in tex-
tual or graphical notation, to be employed by domain experts.

One of the problems that we address in this paper is
that ROS 2 is still inclined to the manual development of
software and lacks formal, code-independent meta-models that
facilitate model-driven approaches. To this end, we extend and
adapt an existing meta-model for component-based software
frameworks to also support ROS 2. As a second problem
we have observed that QoS specifications in ROS 2 are only
checked at runtime when the robots are already deployed. By
leveraging a model-driven approach to formally represent QoS
profiles, we can instead inform developers already at design
time if certain QoS requirements are violated. Additionally,
those models enable the generation of run-time monitors to
detect QoS violations.



In summary, we make the following core contributions:
• We derive and implement the meta-models and DSLs to

specify QoS profiles for component-based RSFs.
• We enrich an existing meta-model and DSL for modelling

component-based software with ROS 2-specific concepts
and constraints.

• We provide a language workbench that allows domain
experts to specify models, perform constraint checks and
generate code.

Following this introduction, Section II reviews the related
work. Section III analyzes the required domains which are
then realized as DSLs as explained in Section IV. After the
evaluation in Section V we conclude the paper in Section VI.

II. RELATED WORK

A. Modeling in QoS

Due to the ubiquity of wired and mobile phones, QoS
management is predominantly found in the telecommunica-
tion domain where it targets communication and networking
infrastructure in distributed systems. In an effort to abstract the
performance engineers in those domains from the technical
details of the underlying networks a considerable effort has
been spent on the development of DSLs — also called QoS
Modeling Languages (QML) — such as the HP QML [5],
the QoS-MO ontology [6], the Contract Description Language
CDL [7] or others as surveyed in [8]. The Data Distribution
Service (DDS) QML (DQML) presented in [9] enables a
model-based annotation of DDS [10] communication entities
(e.g. publishers or subscribers) with specific QoS profiles.
From such annotations configuration files can be generated.
A limitation of the above DSLs is their lack of abstraction for
component developers in robotic systems together with the
general lack of tool support.

In the context of robotics, the RoQME project [11] focuses
on a model-driven approach for the design-time specification
of QoS metrics and their monitoring at runtime. Here, QoS
metrics are system-level, non-functional requirements such as
safety and performance.

B. Modeling of robotic software frameworks

Across various fields including control, electrical, mechani-
cal or software engineering a recurring type of usually graph-
ical models consists of (i) blocks; (ii) ports associated with
those blocks; and (iii) connections between the ports. While
they all feature the same representation, their semantics vary
greatly from one field to another. NPC4 [12] is an effort
to formalize the structural concepts and constraints of all
those diagrams in the form of a domain-independent meta-
meta-model. The Component-Port-Connector (CPC) meta-
model [13] specializes the NPC4 meta-meta-model for the
domain of component-based RSFs. There is a plenitude of RSF
realizations that conform to the CPC meta-model with varying
degrees of formalization: (i) ROS and OROCOS RTT [14] are
examples of RSFs without formal models or formal models
are just an afterthought; (ii) GenoM3 [15] or OpenRTM [16]
are based on formal models; while (iii) V3CMM [17]

and RobotML [18] are RSF-independent modeling tools for
component-based software derived from formal models.

State-of-the-art tools to realize DSLs and associated tooling,
such as constraint checking or generators, are the Eclipse
Modeling Framework (EMF) [19] or the JetBrains Meta Pro-
gramming System (MPS)1.

In this paper we employ the latter so to reuse the Component
DSL2 [20] for modeling framework-independent systems of
software components. Here, components consist of ports,
operations, and properties. They come in two “flavours”,
component types and component instances (similar to classes
and their objects in object-oriented programming), to foster the
reuse of component definitions. Only component instances can
be connected with each other or receive concrete values for
their properties.

While modeling a ROS 2 system we have observed two limi-
tations of the Component DSL. First, it structurally constrains
connections to a 1:1 cardinality i.e. exactly one source port
can be connect to one target port. This limitation — which
is, for example, also present in the CPC and the RobotML
DSL — does not align with ROS’ publish-subscribe mes-
saging pattern that allows m:n connections between multiple
sources and targets. The NPC4 meta-meta-model addresses
this limitation by introducing the connector concept to con-
nect an arbitrary number of ports. Second, the Component
DSL lacks support for QoS settings. This is not merely a
syntactic deficit, but instead also adds constraints that define
valid compositions of components. For example, incompatible
profiles will prevent ports from communicating, thus resulting
in unwanted behaviour. In addition, the explicit declaration of
QoS requirements enables the generation of code to monitor
QoS conformance at runtime.

III. DOMAIN ANALYSIS

Following the CPC meta-model, ROS allows to structure
robotic software architectures by components (nodes), ports
(publisher-subscriber or service client and server) and con-
nections (topics or services). The original ROS version —
“ROS 1” — uses a custom communication middleware that
offers two types of transports to realize the connections,
namely TCPROS and UDPROS, relying on TCP for reli-
able streams and UDP for best-effort datagrams, respectively.
ROS 2 still conforms to the CPC meta-model, but replaces
the custom communication middleware with DDS and also
introduces backwards-incompatible API changes. The ROS
middleware interface (RMW) acts as an abstraction layer to
support DDS implementations from different vendors. This
enables developers to choose an implementation that best suits
their needs in performance.

One benefit of DDS is the support for QoS profiles, which
enables a more fine-granular configuration of the communica-
tion middleware than the old transports in ROS 1. In particular,
developers can choose the policies for each individual port, in

1https://www.jetbrains.com/mps/
2https://github.com/rosym-project/component-dsl

https://www.jetbrains.com/mps/
https://github.com/rosym-project/component-dsl


Fig. 1: Excerpt of QoS DSL (left) and ROS 2 DSL (center right) visualized in Ecore. Further capabilities extend the abstract
Capability concept as exemplified by Reliability to be used in the profile model. Those profiles are annotated to ROS 2
ClientPorts, ServerPorts or OperationPorts via the CapabilityProfileAnnotation. The same holds analogue for requirements that
are annotated to the OperationConnector. The ROS 2 DSL also adds concepts to represent ROS-specific interface definitions
(messages, services and actions) and configurations such as Remappings or Namespace.

an effort to achieve better performance than with one global
policy for all ports. The DDS standard [21] describes the
supported QoS policies. However, ROS 2 only supports the
following subset of those policies3: reliability, durability, his-
tory, depth, deadline, lifespan, lease duration and liveliness. If
no policy is specified for a port, DDS falls back to the system’s
default which is however vendor-specific. To facilitate the
communication between two ports, their QoS profiles must be
compatible. The concrete definition of compatibility is defined
in the standard, but roughly means that the policy requested
by the subscriber must be equally or less restrictive than the
policy offered by the publisher. Whenever a publisher and
subscriber try to establish communication with incompatible
QoS profiles, DDS will fire an event but ROS 2 will not
notify the user by default. As a result, unless the developer
configures a callback function for the specific event, there is
no way to determine the reason why the connection could not
be established.

In the next sections we will employ the following, non-
normative definitions:

• A QoS requirement is specified on the logical connection
between two components and has to be satisfied at
runtime by the physical communication channel.

• A QoS capability is specified as a configuration setting
on a communication channel’s endpoint.

Those definitions reflect the protocol’s view on the communi-
cation channels. However, it should be noted that there also
exists a dual view (which we do not employ in the following)
where capabilities are expressed on the physical channels and
endpoints express requirements towards those communication
channels.

3https://index.ros.org/doc/ros2/Concepts/About-Quality-of-Service-Settings/

IV. DOMAIN-SPECIFIC LANGUAGES

The presentation of the developed DSLs follows MPS
terminology, in particular a concept is a primitive in the MPS
meta-meta-model similar to a class in Ecore or UML. We
denote concepts by italic type. In the following we present
our MPS workbench that consists of language modules for a
generic QoS DSL, its specialization to DDS and a ROS 2 DSL
that extends the Component DSL.

A. QoS DSL & DDS DSL

The QoS DSL is a minimal, yet extensible, declarative
configuration language [22] for defining communication QoS
profiles via QoS capabilities and requirements. While the
language is designed to take advantage of the new QoS
features in ROS 2, it is still DDS- and ROS-independent so
that QoS profiles can be reused and specialized in different
projects.

The QoSDefinition concept is composed of multiple Re-
quirementsProfiles and CapabilitiesProfiles, as depicted in
Fig. 1. These profiles are a collection of requirements and
capabilities, respectively, which extend the expression concept
from MPS’ BaseLanguage4, the meta-meta-model used to
create all languages in the workbench. In this context, the
collection has the semantics of a conjunction. One benefit
of extending the expression concept is that the requirement
definitions can be minimal with one requirement per statement,
or complex with multiple requirements in a single statement
using logical connectors, as shown in Fig. 2. At this point
in time we do not yet check if the profiles themselves are
consistent, for example, a requirement could be repeated with
conflicting configuration values.

4https://www.jetbrains.com/help/mps/base-language.html

https://index.ros.org/doc/ros2/Concepts/About-Quality-of-Service-Settings/
https://www.jetbrains.com/help/mps/base-language.html


Fig. 2: A simple QoS DSL model with the DDS DSL exten-
sion. The requirements profile consists of two statements: one
with a single parameter, and one composed of two parameters
connected with a logical connector. The capabilities profile
exemplifies four policies from then DDS DSL.

The different policies that compose a capability profile
extend the concept Capability, and similarly the possible
requirements extend the Requirement concept. This design
choice facilitates the extension with further policies, as new
languages can extend either of the two concepts. For instance,
a new language can contribute other requirements by extending
the Requirement concept. It is important that the additions
extend the correct concept, as MPS constraints are used to
ensure that a capability is not added to a requirement profile
and vice versa. The current QoS DSL offers six pre-defined
QoS requirements, namely: error rate, jitter, loss rate, data
rate, availability, and delay. Those requirements cover most
performance aspects of a connection [23] and align with the
policies supported by ROS.

The DDS DSL conforms to the QoS DSL and adds DDS-
specific constraints. First, where capabilities in the QoS DSL
can be specified using arbitrary relational operators such as
“equal to”, “not equal to” or “less than”, the DDS DSL instead
only supports equality constraints (see Fig. 2). Second, it also
constrains the numeric values associated with the profiles’
capabilities.

B. ROS 2 DSL

In order to model connections between multiple publishers
and subscribers we slightly modify the Component DSL as
visualized in Fig. 3. The changes conform to the NPC4 meta-
meta-model with the addition of a directionality constraint
as indicated by the names “source” and “target” in the new
concepts. For RSFs such as OROCOS RTT, that only support
1:1 connections, a framework-specific MPS constraint must be
added.

We employ MPS annotations to enrich the generic Compo-
nent DSL with ROS 2 specific concepts and constraints. An
annotation is one mechanism in MPS to extend a language by
embedding concepts to models without introducing couplings
between the original language and the extension [24]. The
annotation concepts extend the NodeAttribute concept from
BaseLanguage, as represented in Fig. 1. The annotation mech-
anism is used for attaching (i) structural ROS 2 elements (e.g.

Fig. 3: Excerpt of the Component DSL showing the previous
Connection concept (left) and our modification (right). The
so-called smart references (i.e. the concepts with the suffix
“Ref”) are merely an artifact of a technical limitation in MPS
that prevent 1:n cardinalities of references.

Fig. 4: Model of a component using the Component DSL with
ROS 2 annotations. An input port (top) and an operation’s
server port (bottom) are annotated with a QoS profile called
wifi_conn.

topics or services); and (ii) QoS profiles to the Component
DSL. For the latter, the component’s ports are annotated with
the capabilities profiles as the QoS settings are configured
in the publishers, subscribers, clients, and servers, whereas
the connections — for topics, services, and actions — are
annotated with the requirement profiles (see Fig. 4). Together,
those languages enable us to model and validate ROS 2
applications.

Beyond the graphical editors, we have also implemented
code generators based on the MPS Text Generator plugin5.
Those generators employ MPS’ powerful template engine that
extracts information from the developed models. In particular
have we realized generators for three types of software arti-
facts: launch files in Python, configuration files in YAML, and
monitor nodes in C++.

The monitor takes advantage of the topic statistics mecha-
nism6 in ROS 2 — a configurable ROS introspection mecha-

5https://jetbrains.github.io/MPS-extensions/extensions/plaintext-gen/
6https://index.ros.org/doc/ros2/Concepts/About-Topic-Statistics/

https://jetbrains.github.io/MPS-extensions/extensions/plaintext-gen/
https://index.ros.org/doc/ros2/Concepts/About-Topic-Statistics/


(a) With plain ROS 2 the incompatibility is identified at runtime, but
the developer is only notified after explicitly registering a callback.

(b) With our toolchain the incompatibility is found at design time.
The checking rule highlights the invalid connection to notify the user.

Fig. 5: Comparing development in ROS 2 and our toolchain

nism that provides certain metrics for topics. If monitors are
specified, then per connection to monitor a node is generated
and added to the launch description. The monitor currently
supports the jitter and delay requirements expressed on the
QoS requirement profile. It notifies the user whenever a
violation of the requirement occurs. In its current state the
monitor can only check for compliance of the requirements in
topics.

Each monitor receives the statistics from the topic
<connection name>/statistics, and processes it to get the
values for jitter and delay. These are obtained from the metrics
message, which includes an average and a standard deviation
for each metric measured7. Currently, the two metrics sup-
ported are message period and message age, both metrics are
calculated by the subscribers and are measured in milliseconds.
The delay is considered to be the average value of the message
age, as the metric is calculated as the amount of time the
message takes to reach the subscriber; the jitter is considered
as the standard deviation of the message period, which is the
time period between received messages.

As previously mentioned, most constraints on the compo-
sition of the system are already enforced by the Component
DSL. One ROS 2 specific constraint is the compatibility of
QoS profiles via an MPS checking rule that iterates through
the sources and targets of a connection. The check is applied
whenever the profiles for the source and target differ. Without
the model-driven approach an incompatibility can only be
found at runtime, rather than at design time as illustrated in
Fig. 5a. Identifying this error is challenging because by default
no notifications are raised. To determine if two profiles are
compatible DDS uses a “Request vs Offered” model3, where
subscribers specify the policy values they will accept, and
publishers specify the policy values they are able to offer.
The two connect only if every requested policy is less or
equally restrictive than the offered policy. The checking rule
in the tooling resembles this mechanism by verifying that two

7https://github.com/ros2/rcl interfaces/blob/master/statistics msgs/msg/
MetricsMessage.msg

Fig. 6: Robots and their interaction in the case study.

policies do not share incompatible values. The only policies
checked for, are those that can have incompatibilities; namely
reliability, durability, liveliness, deadline, and lease duration.
The system default value is considered as the value for any
unspecified policy in the profiles, and can be modified with
the DefaultQoS concept. If an incompatibility is found, the
user receives an error message, as shown in Fig. 5b.

V. EVALUATION

We employ the Goal-Question-Metric (GQM) approach [25]
to evaluate the proposed DSLs and their corresponding tooling
from a language designer and language user perspective.
From the perspective of a language designer we evaluate
attributes of the language, while from the perspective of the
language user we evaluate the advantages and usefulness of
the tooling. To this end, a case study (see Section V-A) is in-
troduced which allows us to assess different evaluation objects
such as models, constraint checks and generated artifacts.

A. Case Study

We consider a multi-robot system that manages the stock of
a warehouse as our case study to exemplify the model-driven
engineering support for ROS 2 (see Fig. 6). The system is
composed of a central computer and a team of distributed
mobile robots communicating with the central computer via a
Wi-Fi network. The role of the central computer is to assign
tasks to individual robots. Each robot shares its location and
task status with the central computer. The setup implies two
challenges with respect to timely and reliable information
processing in such a distributed system. First, the strength of
the Wi-Fi network throughout the warehouse will vary due
to both the distance between the robot and the routers and
the internal structure of the warehouse. Second, the messages
exchanged between the robots and central computer vary with
respect to their frequency, size and priority.

B. QoS Capabilities

To ensure a proper performance of the system in the
presence of the challenges mentioned above, we associate
capability profiles to several ROS topics in the envisioned
system. An overview of the profiles employed in the case
study is shown in Table I. The profile values shown in green
are briefly discussed in the following paragraph.

https://github.com/ros2/rcl_interfaces/blob/master/statistics_msgs/msg/MetricsMessage.msg
https://github.com/ros2/rcl_interfaces/blob/master/statistics_msgs/msg/MetricsMessage.msg


Policy default task action location robot location central traffic conn
Reliability reliable - best effort best effort best effort

History keep last - - - -
Depth 10 - 1 - 1

Durability volatile transient local - - transient local
Deadline +inf - 10 s 10 s 30 s

Liveliness automatic - - - -
Lease duration +inf 10 s 10 s 10 s 30 s

TABLE I: Capability profiles for the case study. Dashes represent that the default value will be used.

The individual robots share their position in the warehouse
with the central computer over the location topic. For
this topic the Reliability policy is set to “best effort”,
since the location message is sent regularly by the robots and
this configuration value ensures that the received messages
are always the latest ones. Instead, a “reliable” policy could
cause the retransmission of messages in non-ideal networks
and hence result in outdated data. Since the location constantly
changes the Durability is set to “volatile” to ensure
that the central node does not assume a wrong location if
it disconnects and reconnects. The central node is able to
receive more messages (from different robots) that it can
handle at a certain time, thus the robots and central node
use different profiles in order to specify different depths of
message history. The Depth in the profile for the central node
is the default value, whereas the depth in the robot’s profile is
1. The traffic topic is used to re-route and re-schedule
robots in the warehouse. The Deadline and the Lease
duration for this topic is 30 seconds and Durability
is set to “transient local” such that reconnecting or newly-
joining robots can receive some traffic information, even if it
is not accurate. It is important that the central computer knows
when a robot is unresponsive as soon as possible, hence the
Deadline and Lease duration for the location topics
is shorter.

C. QoS Requirements

We consider the QoS requirements in [26] for telemetry
operations relevant for our case study as the robots continously
share their position and other status information. According
to Chen et al. [26] telemetry operations require real time
performance, for which small delays are acceptable. Thus, for
the location and traffic topic the maximum acceptable delay
is 250 ms. The maximum acceptable jitter for the traffic topic
is 100 ms. For the location topic the acceptable jitter has to
be greater, as there will be more variability in the sending of
the messages by the robots. Therefore, the jitter requirement
is set to 300 ms.

D. Modeling languages

To model the component architecture considered in the case
study we employed the modified Component DSL and the
ROS 2 extensions through one system model, two component
models, and one ROS definitions model. To evaluate the goal
expressed in Table II we evaluate Q1 using the metrics M1
through M3. The ROS 2 extension consists of three languages

Goal

Purpose Extend
Issue with ROS 2 structural aspects
Object the Component DSL
Viewpoint Language designer

Question Q1 Which ROS 2 specific structural aspects were
added in the extension?

Metric
M1 Number of changes to the Component DSL
M2 Number of structural concepts added in ROS 2

DSL
M3 Number of QoS annotations added to models

Question Q2 Does the modifications to the Component DSL
achieve a more general meta-model?

Metric M4 Number of messaging patterns that can be mod-
eled.

TABLE II: GQM analysis on the ROS 2 DSL.

and one modification of the Component DSL (M1). The ROS 2
DSL contains 22 additional structural concepts, such as the
interface definitions and the operation ports (M2). Since one
important addition in ROS 2 is the specification of QoS
policies in publishers and subscribers, the QoS DSL and
DDS DSL are included, which contain 19 and 12 structural
concepts, respectively. The profiles defined with the QoS
languages are referenced by two annotations in the component
and system model (M3).

To evaluate the question Q2, we examine metric M4. The
number of messaging patterns that can be modeled by the
Component DSL without the ROS 2 extension remains one;
however, with the modification the meta-model is less restric-
tive. Before the modification the Component DSL could model
a publish-subscribe pattern with only two participants, which
are the source and the target. With the proposed modification,
connections with more participants can be expressed with the
meta-model. This improves expressiveness concerning ROS
without negatively impacting the modeling of connections
in other frameworks, as models expressed with the original
meta-model are still valid. Constraints can be implemented
by framework-specific extensions to validate the number of
participants in a connection.

Evaluating the goal for the QoS DSL is done through
the analysis presented in Table III. For Q3 we consider the
extensible concepts in the meta-model (M5). The QoS DSL
was designed to be extensible so that language designers can
expand the language whenever it is considered incomplete. To
do so, the designers can extend either the Capability or the
Requirement concept to add the relevant missing concepts. To
answer Q4, we look into the metrics M6 and M7. The current



Goal

Purpose Create
Issue an extensible
Object configuration language for QoS profile specifica-

tion
Viewpoint Language designer

Question Q3 How does a language designer extend the capabil-
ities and requirements offered?

Metric M5 Extensible concepts
Question Q4 How complete are models with the current version

of the QoS DSL?

Metric M6 Number of capability concepts
M7 Number of requirement concepts

TABLE III: GQM analysis the QoS DSL.

Goal

Purpose Express
Issue a sound ROS 2 system with QoS settings
Object with the set of models created with ROS2 DSL

and DDS DSL
Viewpoint Language user

Question Q5 Which constraints and checking rules apply?
Metric M8 Number of constraints and type rules checked for

the models

TABLE IV: GQM analysis of constraints and type rules.

version of the meta-model offers eight capabilities (M6) and
six requirements (M7). With the provided concepts a language
user can model a complete QoS profile in ROS, but other
frameworks and middleware may require more concepts for
completeness. Similarly, the provided requirements may be
insufficient to capture all performance related aspects.

E. Tooling

To assess the goal expressed in Table IV, we consider
the question Q5 and the metric M8. The extension enforces
five constraints on the models in addition to the constraints
enforced by the Component DSL. These five constraints enable
specifying a ROS 2 system with QoS settings that is sound,
meaning that if implemented according to the models the
resulting system will be error-free. The new constraints are:

1) Component instances must have a unique name.
2) Two distinct QoS capability profiles must be compatible

for communicating.
3) The durability policy must not have “persistent” or “tran-

sient” as value.
4) The liveliness policy must not have “manual by partici-

pant” as value.
5) The policies deadline, depth, lease duration, and lifespan

must have a positive integer value.
The last constraint (5) is enforced in the DDS DSL with

four constraint concepts; whereas the constraints 1–4 are
implemented in the ROS 2 DSL with one constraint concept
and eight checking rules.

Code generation is evaluated with the GQM presented in
Table V. From the models the toolchain generates three types
of files (M9), namely the launch file, the configuration files,
and the monitor. The number of files generated depends on
the models: for each system model there is one launch file, for

Goal Purpose Generate
Issue a launch file, configuration files, and a monitor
Object from the models
Viewpoint Language user

Question Q6 Which files are successfully generated?
Metric M9 Generated files

TABLE V: GQM analysis of generated files.

Goal Purpose Generate
Issue a monitor to test at run-time the compliance
Object to the specified QoS requirements
Viewpoint Language user

Question Q7 Which requirements can be monitored?
Metric M10 Monitored requirements

TABLE VI: GQM analysis of the monitored requirements.

each component instance with properties there is one config-
uration file, and for each connection in the system to monitor
there is a monitor component. Hence, for the case study six
files are generated: one launch file, three configuration files,
and two monitor components. The launch file is a Python
script that returns a launch description with all the component
instances and their configurations. The script is able to find the
configuration files for the components when these are located
in the /config directory of the ROS project.

For evaluating the goal asserted in Table VI we consider
the question Q7 and the metric M10. The monitor is a C++
ROS node that listens to the topic statistics generated by the
subscribers and checks for each requirement that contains
either the metrics jitter, delay or both (M10). Currently, the
node only notifies the user whenever the requirements are
violated. However, the developer is free to add additional logic
to propagate errors through the system. The metrics are derived
from the topic statistics mechanism of ROS, the developer is
left to configure the subscribers correctly for the monitor to
receive messages.

The performance of the generated node as a requirements
monitor is acceptable with room for improvements. First, the
measurements are imperfect since these values are calculated
as a moving average, meaning that delays will not be caught
immediately. Second, because of the moving average the
values for delay and jitter will be maintained for a period
of time, meaning that the monitor will still conclude that
the requirements are being violated even if the bad network
conditions are no longer present. Third, the monitor should
support more metrics to give more information to the system
and to the developer regarding network conditions. Finally, in
its current state the monitor can only supervise the commu-
nication between publishers and subscribers, as the statistics
mechanism is unavailable for clients and servers.

VI. CONCLUSION

We introduced an MPS language workbench for ROS 2
systems as an extension of the Component DSL which allows
the user to specify and validate the QoS settings already at
design time. The workbench comprises four main DSLs: (i) A



reused framework-independent Component DSL with slight
modifications to support m:n connections between compo-
nents. (ii) A ROS 2 DSL which enables developers to annotate
models of the Component DSL with ROS 2 specific concepts.
(iii) A newly-developed QoS DSL capturing framework- and
middleware-independent QoS concepts and constraints. (iv) A
new DDS DSL conforming to the QoS DSL by adding DDS-
specific concerns. The workbench includes code generators
associated with the ROS 2 DSL to generate launch files,
configuration files and monitoring components. The meta-
models introduced in this paper support different roles in the
robotic development process. Still, the QoS DSL and the DDS
DSL mainly support the responsibilities of the performance
designer8, who must configure performance related aspects of
the system. By creating QoS profiles, performance designers
can have an impact in the performance of the communica-
tion middleware, which is essential in a ROS application.
Following the GQM evaluation method we have shown that
our model-driven approach can benefit ROS 2 designers and
developers by increasing the expressiveness of the Component
DSL. By means of constraint checks and text generations,
oversights can be identified and corrected at design time;
and network conditions can be monitored at runtime. We
are planning to extend the code generators to further ROS 2
artifacts (e.g. package description and interface definitions).
In addition, it is worthwhile to investigate how round-trip
engineering can support developers by updating the models
based on changes in such ROS 2 artifacts. Even though the
monitor is already helpful for developers to understand how
the system performs we plan to extend the monitor to metrics
such as availability, error rate, data rate, or loss rate. Finally,
we plan to study the generality and completeness of the
languages as well as the tooling in a more elaborate evaluation.
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