
Skill-Based Architecture Development for Online Mission Reconfiguration and
Failure Management

Alexandre Albore∗, David Doose∗, Christophe Grand∗, Charles Lesire∗ and Augustin Manecy∗
∗ONERA/DTIS, University of Toulouse

2 av. Edouard Belin,31400, Toulouse, France
Email: {firstname.lastname}@onera.fr

Abstract—The development of software architectures that en-
sure both a high-level of autonomy in the mission, and the
robustness to possible failures, is a challenging task. In this pa-
per, we propose to structure the software architecture around a
skill management layer, based on formal skill models. This skill
management layer helps to structure and test the underlying
functional layer, while it provides a simple abstraction to the
decision layer. This architecture has been used to support the
implementation of resilient behaviours, using Behaviour Trees,
in autonomous UAV missions, when facing sensor failures or
communication losses.

Index Terms—Software Engineering, Error handling and re-
covery, Robotics

1. Introduction

Autonomous robotic systems are going to be a common
tool to perform observation missions, such as inspection
of infrastructures, monitoring of the environment, or post-
disaster situation assessment. For the operator to be con-
fident and interested in the use of autonomous systems,
these must guarantee a robust behaviour when confronted
with hazardous situations, such as failures of sensors or
processing. Developing a complete functional architecture
that implements intelligent behaviours resilient to failures
is heavy work. These behaviours can be provided by the
robot manufacturer, however they often require a costly de-
velopment process, which is most of the time not affordable
by small enterprises. The manufacturer itself is generally
unaware of the final user requirements, being not adapted
to the actual situation in which the robot is deployed. If the
robust behaviour is brought to the system by the robot users,
then they are required to have a precise understanding of the
robot’s internal functions, which is not always the case.

In this paper, we are interested in providing models and
tools to implement adaptive recovery strategies in case of
robot failures. To do so, we propose a layered approach.
Functional software architectures are indeed complex soft-
ware systems, made by several processes or nodes, often
specifically designed to fit the robot platform’s peculiar con-
figuration. The robotic community has taken a large benefit
in using ROS [1], as it helps to structure the architecture
in nodes, and gives modularity and flexibility in the design

of functional layers. We argue that implementing resilient
behaviours for autonomous systems requires to reason on
a more abstract level, by manipulating resources or skills
[2], [3] instead of nodes and topics needed for internal
communication. The robot user would then not need to know
how the functions are internally implemented but only what
are the capabilities (skills) and resources provided by the
robot.

In the following, we present the development process
of a robotic software architecture based on the skill for-
mal model from [3]. Skills are basic functionalities that
participate, in a modular manner, to design the complete
task or mission of a robotic system. We have specifically
used resource models and how these resources are used in
the skill models to implement failure detection, redundant
sensors or processing, and alternatives skills to perform
the mission. The development process then uses on one
side code generation to organize the functional architecture
around manager nodes, which will interact with the nodes
of the functional architecture, and answer to skill execution
requests. On the other side, a standardized skill interface is
used to implement the autonomous robot behaviour to per-
form the mission, and the existence of a formal skill model
is exploited to identify faulty situations and to implement
recovery behaviours.

We have used this process to develop the skill-based
architecture of an autonomous UAV, and implemented the
behaviours to perform observation missions. Task level
programming, which encompasses the mission outline and
the system recovery strategies, is then implemented using
Behaviour Trees (BTs) – a formalism used to encode the
control architecture of a Hybrid Dynamical System [4], [5].
The structure of a BT is close to function calls in program-
ming, with subtrees accomplishing specific behaviours of
more complex programming, combining the different skill
executions.

In Section 2, we present two scenarios in which failures
occur, and the layered skill-based architecture we eventually
deployed for one of them. Some works related to skill
model and skill management are presented in Section 3. In
Section 4 we present the skills modeling language, and how
we used the associated tools in the development process.
Then we present the BT models in Section 5, and some
experimental results on the presented scenarios in Section 6.

2. Use Cases / Scenarios

Here we describe two different scenarios to illustrate
how a skill-based architecture can be used to deal with
hazardous events during robotic missions.

2.1. Communication Loss during BVLOS Flight

This use case aims at inspecting a building by turning
all around it in a BVLOS scenario (UAV Beyond the Visual
Line of Sight of the safety telepilot). Even if the flight plan is
executed automatically, the aerial regulation requires that the
safety telepilot can take back manual control at any moment,
which assumes permanent video feedback. This feature is
provided by a stream skill which adjusts the video com-
pression rate to guarantee a minimum FPS and a minimum
image quality criteria. During the inspection, we assume
the UAV travels through different communication zones
featuring more or less degraded bandwidth until entering a
critical bandwidth zone (i.e., for which FPS criteria cannot
be respected anymore). When this occurs, the stream skill
terminates in failure and the mission BT switches to another
branch, that stops the inspection, makes the UAV hover a
few seconds, then land at its current location.

2.2. Obstacle Avoidance during 3D Mapping

This use case aims at building a map of an unknown en-
vironment using an hexarotor UAV. The cartography is done
by a SLAM algorithm relaying on IMU and LiDAR data.
To maximize LiDAR scan area, the LiDAR was strapped
to the drone in order to perform scans orthogonal to the
displacement direction. A frontal ZED camera produces a
depth-map used to detect obstacles. In case of a failure
of the frontal depth-camera, the displacement strategy is
reconfigured by performing ”crab” displacement in order to
use the LiDAR to detect obstacles, as described in Figure 1.
As a result, the cartography performances are degraded, but
the obstacle avoidance function can be maintained.

The implementation of this resilient behaviour has been
achieved by the development of the 3-layer architecture
presented in Figure 2, whose central element is the skill
management layer. The functional layer implements the
”low-level” functions of the robotic system; This set of
functions is generally implemented by several components
with a set of parameters to manage configurations and the
components usually provide an API to tune parameters,
receive setpoints/references and deliver running status. In
our example, the functional layer consists in several ROS
nodes, communicating through topics, providing dynamic
parameters for configuration and implementing guidance
control loops, obstacle detection and sensor readings and
fusion. The skill-based layer is composed of one or several
skillsets which provide a formal access to robot’s capabili-
ties (see Sec. 4.1). A skillset is composed of skill managers
and resources managers which are components automati-
cally generated from the skills’ model. The skill managers
offer an abstraction layer to easily start/configure a subset

Figure 1. Recovery behaviour after failure of the depth-camera: the initial
trajectory (red waypoints) is performed in nominal mode; after the failure
of the camera, the LiDAR is used to detect obstacles, and the following
waypoints (in blue) are performed in degraded mode.

of functional layer components and automatically change
resource states accordingly to the skill model (via internal
transitions). Interactions with the functional layer can be
added by the developer via customizable callbacks of skill
managers (see Sec. 4.2) and external transitions of resources
can also be triggered via a SkillSet Interface API to reflect
functional layer states. The decision layer, implemented here
as a Behaviour Tree (BT), calls sequentially (or in parallel)
several skills through a standardized skillset interface, also
automatically generated, in order to perform the mission. It
monitors skill progress and also checks their termination
results to detect failures and then switch to alternative
branches which activate other subsets of skills to continue
the mission –if possible–, or to adopt a suitable behaviour.
A mission operator can start the mission by triggering the
BT execution and can follow the execution of the mission
thanks to a BT-viewer, and a skill timeline to visualize skill
execution states.

3. Related Works

Skill models have been used in several works in the
field of robotic manufacturing. Descriptive models of skills
have been proposed in [6]. These models include input
parameters, preconditions, and predictive effects, which are
used to plan skill sequences. The authors have proposed a
methodology to translate skill models into PDDL planning
models. They do not consider possible failures of skills. In
[7], they also define skill monitors that check online the
preconditions and effects of skills to detect failures. These
monitors are external processes that observe some elements
of the architecture, and are not a structuring feature in the
architecture development process: the interaction with the
robot platform has still to be programmed manually, and
failure management based on models is not possible.

Other works have proposed a formal model of skills.
A relational model representing the relations between skills

Perception skillset

Motion skillset

Mission Operator Tele-Pilot

Skills & Resources layer

Take-Off

LandGoto

GotoStraightRotateHead

LockHead

SDK auth.

Axes auth. Yaw auth.

Flight Status Home

Decision layer Functional layer

obstacle mapzed statuszed depthmap

LiDAR Status LiDAR depthmap

obst. detect.LiDAR mapping

zed depthmapLiDAR depthmap

DJI -M600

Goals

Progress,

Guidance

High Level

Status

Setpoints

SkillSet API

Sensors

Data

Config.

APIs

Interface lib

Guidance
Node

dji_sdk
Node

Low Level
Command

Serial-Link

zed

SLAM
Node

Telemeter
Node

Sensors,
flight status

LiDAR

Obs. Detect.
Node

IMU
Node

GNSS
Node

BT Root (m600)

Do Takeoff
Activity dispatcher

--SuccessOnAll(¯)--

LIDAR Mapping Skill Navigate

ZED navigation
--SuccessOnAll(¯)--

LIDAR navigation
--SuccessOnAll(¯)--

Do Hovering

ZED Depthmap Skill Follow Trajectory

Waypoints Writer GotoStraight Skill

LIDAR Depthmap Skill Follow LH Trajectory

Waypoints Writer 2 RotateHead Skill LockHead-m600 results

Skills' Timeline
Monitor

Behaviour Tree

extern
transitions

RESOURCES

SKILL-MANAGERS

SKILL-MANAGERS

RESOURCES

internal transitionsstatus

internal transitionsstatus

Figure 2. The 3 layer based architecture: decision (Behaviour Tree), skills-resources and functional layers

and resources and data has been proposed in [8]. This model
however neither represents the behaviour of resources, nor
possible terminal states of the skill executions. In [9], skills
are represented with preconditions and device resources re-
quirements in an OWL ontology, including synchronization
of skill execution. Again, the skill models do not integrate
information about possible failures. Performance Level Pro-
files (PLP) [10] use as a semi-formal language (based on
XML Schema) to represent modules available on a robot
platform. The module’s description is rich, including precon-
ditions/effects, resources, modes, and rates. Moreover, some
tools are provided to generate PDDL models or runtime
monitors. The behaviour of the modules is however not
defined, preventing the use of verification methods or the
definition of sound protocols.

In a previous work [3], we have proposed a specification
language for skills, that has deep links with the previously
mentioned models. Its specificity is that, first, it includes a
rich model of resources through state-machines, and links
the skill execution with constraints on these resources;
second, the execution of these skills is formally defined,
easing code template generation. In the next section, we
remind the features of the skill language, and present the
use of the associated models and tools to develop a skill-
management architecture that emphasizes the failure man-
agement process. In Section 5, we present how we controlled
the mission, including recovery strategies, using BTs.

4. Skill Management Architecture

4.1. Skill and Resource Models

The skills specification language proposed in [3] groups
elements into skillsets, containing skills related to one sub-
system: navigation functions, some driver and associated
processing, etc. A skillset is made of three kinds of elements:

• data, that specify the data that are made available
to the decision-making layer (internal data of the
functional architecture need not to be described);

• resources, that specify elements of the architecture
that will enable and constrain the execution of skills;

• skills, that represent available robot capabilities.

We detail and illustrate resource and skill models.

4.1.1. Resources. A resource is modeled as a state-machine.
A resource can represent either the status of a device of
the platform (typically, a sensor), or some logical condition
for skill execution. For instance, the resource modeled in
Listing 1 (with corresponding state-machine depicted in
Figure 3) represents the fact that the control system of the
robotic platform gave control authority to the autonomous
architecture. Transitions of this resource are defined as
extern, meaning that the skills will not be able to trigger
these transitions, only the functional layer can.

1 r e s o u r c e SDK author i ty {
2 i n i t i a l UNAVAILABLE
3 e x t er n AVAILABLE −> UNAVAILABLE
4 e x t er n UNAVAILABLE −> AVAILABLE
5 }

Listing 1. Authority resource model.

UNAVAILABLE AVAILABLE

Figure 3. Authority resource state-machine (dashed transitions are extern).

Listing 2 and Figure 4 represent a resource modelling
the availability of the axes control. This resource is purely
internal: it is used to represent mutual exclusion between
skills, but has no link with the functional layer.

4.1.2. Skills. Skills represent the capabilities exposed by the
functional layer. Skills are defined by several elements:

• inputs, that define the parameters of the skill;

1 r e s o u r c e a x e s a u t h o r i t y {
2 i n i t i a l AVAILABLE
3 AVAILABLE −> USED
4 USED −> AVAILABLE
5 }

Listing 2. Axes authority resource model.

AVAILABLE USED

Figure 4. Axes authority resource state-machine.

• preconditions, over resource states or data predi-
cates;

• invariants, that must hold during skill execution;
• effects, applied when the execution ends;
• results, corresponding to the possible terminal states

of the skill;
• a progress field, giving the period at which the skill

will give some feedback on skill execution progress.

Listing 3 defines the takeoff skill of our drone. Its
inputs are the height to reach and the ascending speed.
Skill preconditions are that the authority must be available
(checking states of resources SDK_authority – Listing 1
– and axes_authority – Listing 2), and that the drone is
on ground (modeled in a flight_status resource) with
its home-point valid (homepoint_status resource). If
these preconditions do hold, then the take_control ef-
fect is applied, taking control over the axes resource. During

1 s k i l l t a k e o f f {
2 p r o g r e s s =0.5
3 input {
4 h e i g h t : f l o a t 6 4 / / < h geo fence
5 speed : f l o a t 6 4
6 }
7 e f f e c t {
8 t a k e c o n t r o l : a x e s a u t h o r i t y −> USED
9 r e l e a s e c o n t r o l : a x e s a u t h o r i t y −> AVAILABLE

10 r e s e t {}
11 }
12 p r e c o n d i t i o n {
13 s d k a u t h o r i t y :

r e s o u r c e =(SDK author i ty ==AVAILABLE)
14 not moving : r e s o u r c e =(a x e s a u t h o r i t y ==AVAILABLE)
15 on ground : r e s o u r c e =(f l i g h t s t a t u s ==ON GROUND)
16 home va l id : r e s o u r c e =(h o m e p o i n t s t a t u s ==VALID)
17 s u c c e s s t a k e c o n t r o l
18 }
19 i n v a r i a n t {
20 k e e p s d k a u t h o r i t y :

r e s o u r c e =(SDK author i ty ==AVAILABLE)
v i o l a t i o n = r e s e t

21 i n c o n t r o l : r e s o u r c e =(a x e s a u t h o r i t y ==USED)
v i o l a t i o n = r e s e t

22 }
23 r e s u l t {
24 AT ALTITUDE : apply= r e l e a s e c o n t r o l
25 BLOCKED: apply= r e l e a s e c o n t r o l
26 ABORTED: apply= r e l e a s e c o n t r o l / / t o o b i g d r i f t
27 }
28 }

Listing 3. Takeoff skill model.

this skill execution, the several resource states must not
change (see the invariant definition block). In case one
invariant is violated, the reset effect is applied. This effect
is empty, meaning that it will not change the state of any
resource. Finally, the takeoff skill execution can result
in several states: AT_ALTITUDE, meaning that the takeoff
succeeded, BLOCKED, if the drone could not take off, and
ABORTED, in case of an error of the localisation or the
control processing. In all cases, the axes resource is released.

Every skill has an execution semantics defined by the
state-machine depicted in Fig. 5. When the skill execution
is started, a first validation step is processed. This validation
must be implemented by the developer, that can accept
the skill execution based on some checking of the skill
input. Then if the skill request is accepted, the resource
preconditions are tested. If some resource preconditions are
not met, the execution fails (NR state). Otherwise, the skill
is actually started: the dispatch transition is triggered. The
skill is then running (Rg state), periodically reporting some
progress, and checking the resource invariant. If an invariant
is violated, the skill execution ends in the RI state, and
the corresponding effect is applied. Otherwise, the skill
continues its execution until either an interruption request
is made, or a termination function is called. In that case,
post-conditions or effects of the result are applied (in states
Ti, with 0 < i ≤ k), resulting in ending the skill execution
in the corresponding result state, successfully (for states Si),
or not (states Ni).

Sstart

NV

CR NR

RgRI

IgT1 Tk

S1 N1 NkSk

valid

¬valid

dispatch

terminate1

progress

terminatek
interrupt

post ¬post post ¬post

Figure 5. Skill execution state-machine. Double-circled states are terminal
execution states.

4.2. Skill Management Architecture

In order to practically manage the execution of skills, we
have proposed a skill management architecture, of which an
instantiation is shown in Fig. 2. The toolchain associated to
the skillset definition language includes a manager generator
which produces, based on a model of the skillset, a ROS

architecture (available in both ROS and ROS2) that includes
the following nodes:

• a Data Manager, that subscribes to topics where the
functional layer data are published, and provides an
interface to access these data from the decision layer;

• a Resource Manager, that manages the current state
of each resource, and ensures that the triggered tran-
sition are feasible, both through services available
either to the functional layer (for extern transitions),
or to skill managers (for internal transitions);

• for each skill, a Skill Manager, that implements the
state-machine of Figure 5, interacts with the resource
manager to manage preconditions, invariants and
effects, and in which the skill developer can imple-
ment some specific methods: inputs validation, skill
dispatching, and the call to terminate transitions.

The skillset toolchain also provides:

• a Skillset Interface library (in Python), that allows to
interact with the skillset (get data or resource states,
start skills, interrupt them or get their result);

• ROS/ROS2 bridges, in case the functional layer is
implemented in ROS and the decision layer in ROS2.

Listing 4 shows a very partial extract from the specializa-
tion of the TakeoffSkillManager, where the developer
makes the actual link with the functional layer (done here
thanks to the dji guidance object of our guidance API). We
can notice that, in the validate method, the user checks
the input values, and can also access some functions in the
functional layer to monitor the possible execution of the
skill. The on_dispatch method actually starts the skill
execution. The developer has also registered a callback to
some updates in the functional layer, and depending on the
received information, can terminate the execution in one of
the possible results.

4.3. Skill-based Development Process

We have used the skill models and the generation of the
manager architecture to implement an incremental develop-
ment and test methodology. First, the definition of resource
and skill models has led to better structure the functional
layer, emphasizing which data and control flows are internal
to the functional architecture, and which are meant to be
exposed to a decision layer. We have then used the skills
manager and interface generator to set up a symmetrical
testing process:

• unit-testing of skill managers is implemented using
the skillset interface library, allowing to first setup
some context (interacting with resources or the func-
tional layer), then to start skills, and check their
result;

• testing of the decision-layer without deploying the
actual functional layer; the manager generator also
produces mock managers, that instead of being
linked with the functional layer, respond to skill

1 c l a s s T a k e o f f S k i l l M a n a g e r (A b s t r a c t T a k e o f f S k i l l M a n a g e r) :
2
3 def i n i t (s e l f) :
4 A b s t r a c t T a k e o f f S k i l l M a n a g e r . i n i t (s e l f)
5 s e l f . max speed = r o s p y . ge t pa ram (’ ˜ max speed ’ , 3 . 0)
6 s e l f . d tg h = 0 . 0
7 s e l f . d tg v = 0 . 0
8
9 def v a l i d a t e (s e l f , g o a l i d , g o a l) :

10 # check take − o f f p a r a m e t e r s
11 i f g o a l . speed > s e l f . max speed :
12 re turn F a l s e
13
14 e l i f not d j i g u i d a n c e . check home fence (g o a l . t a r g e t) :
15 r o s p y . logwarn (’ P o i n t o u t o f geo − f e n c e ! ’)
16 re turn F a l s e
17 e l s e :
18 re turn True
19
20 def o n d i s p a t c h (s e l f , g o a l i d , g o a l) :
21 s e l f . g o a l i d = g o a l i d
22 # b u i l d s e t p o i n t and p u b l i s h i t t o m600 guidance
23 d j i g u i d a n c e . s e n d p o s i t i o n r e f (g o a l . t a r g e t)
24
25 def p r o g r e s s (s e l f , g o a l i d , g o a l) :
26 re turn 1 . 0 − (s e l f . d tg v / g o a l . h e i g h t)
27
28 def CB new posi t ion (s e l f) :
29 i f s e l f . d tg v < s e l f . v e r t v a l i d a t i o n d i s t :
30 s e l f . terminated AT ALTITUDE (s e l f . g o a l i d)
31 e l i f s e l f . d tg h > 2 . 0 :
32 r o s p y . logwarn (’ Too much h o r i z o n t a l d r i f t ! ’)
33 s e l f . terminated ABORTED (s e l f . g o a l i d)
34 e l i f (t v e l − s e l f . l a s t t m o v i n g > 5 . 0) :
35 r o s p y . logwarn (’BLOCKED f o r more t h a n 5 . 0 s e c ! ’)
36 s e l f . terminated BLOCKED (s e l f . g o a l i d)

Listing 4. Extract of the takeoff manager. A skeleton of this code is
provided to the developer, who only modifies this part of the generated
managers.

execution request according to their configuration,
which consists of adding delays to the responses,
and defining the result.

These two testing steps, based on the tools provided by
automatic generation from the formal skill models, allow
having a first validation of both the skill manager implemen-
tation and the behaviour implemented in the decision-layer.
To go further in the testing process of the decision-layer, we
set up two complementary testing suites:

• skill managers connected to a simulator, instead of
the actual robot functional layer;

• skill managers connected to the functional layer run-
ning on the robot platform, performing Hardware-In-
the-Loop simulations (using vendor simulation1).

These last validation steps allow not only to validate the
behaviour of the overall architecture, but also the integration
of the decision-making and its impact on the on-board
processing. Note that these several testing and validation
steps are supported by the fact that the skillset interface is
strictly the same, the skill managers being mocks, simulation
managers, or functional managers; and that a great part of
this architecture and interface is automatically generated
from models.

1. The HIL simulation tool is provided by the DJI Assistant 2 configu-
ration tool (https://www.dji.com/fr/downloads/softwares/assistant-dji-2-for-
matrice). A computer, connected to the drone’s flight controller, emulates
the sensor outputs, but the flight simulattion is performed in the embedded
flight controller (DJI-A3 Pro). During HIL simulations, all the flight func-
tionalities are available, i.e., interactions with telepilot’s remote controller,
Onboard-SDK features (to send low-level orders to the flight controller
from the functional layer), etc.

https://www.dji.com/fr/downloads/softwares/assistant-dji-2-for-matrice
https://www.dji.com/fr/downloads/softwares/assistant-dji-2-for-matrice

5. Implementing Recovery Strategies with BTs

We use BTs to develop a control architecture for high-
level mission programming. A BT structure is a directed tree
where inner nodes can encode different types of execution
models (sequential, parallel, etc.), while leaf nodes can be
conditions, calculations, or actions. The tree breaks down
the complex task of coding a robotic mission into smaller,
independent behaviours, from the root node. While a subtree
implements and abstracts several actions and calculations,
on a finer scale, the single behaviours can represent single
applications or calls to a function, like a single skill execu-
tion, a condition, a logical connective, etc. The leaf nodes
execute some computation (calling a skill or performing
some calculation), and return their status (Running when the
execution is ongoing, Success or Failure). At each control
loop (every periodic ticking of the BT), the tree structure is
traversed from left to right, visiting in order each branch
of the tree, launching behaviours when needed, or just
processing the return status of every behaviour. The return
status is then progressed back towards the root node of the
tree, and modified according to the type of each node.

The skills, on which our architecture is based, are en-
coded as single behaviours. These action behaviours, always
present as leaves in the tree, call the skills via the Skillset
Interface. An action behaviour is launched when its node
is first visited, and its successive execution monitored at
every tick via its return status. The return status of an
action behaviour depends on the result of the related skill.
For instance, given the takeoff skill of our drone described
in Listing 3, we can specify skill results corresponding
to Success, Failure or Running statuses of the relative ac-
tion behaviour in the BT: success when the skill result is
SAT ALTITUDE , failure for other terminal results, and running
when the skill is in any non-terminal state (see the skill
FSM in Figure 5). As the execution of the skills can be
made synchronous or asynchronous, it is when the skill
results and the relative behaviour statuses are collected at the
ticking of the BT, that interruptions can occur. Then, some
branch execution can be inhibited by a guard, and other ones
consequently activated, triggering a mission reconfiguration.

One of the central advantages of BTs is their modularity,
which favors their reusability between different missions.
In that way, as subtrees of BTs are still BTs, it is easy to
adapt missions or to simply compose already implemented
behaviours guaranteeing the same degree of robustness
of the implemented task to the new one [11]. Moreover,
this very same modularity allows us to describe mission
elements while maintaining the flexibility we are aiming at
for mission reconfiguration in case of failure.

Behaviours that need to be performed in a predetermined
order, are implemented as children of a sequence node
(Figure 6). However, BTs allow us to implement more
complex action control, and here we use their structure
to easily implement both the nominal mission, and the
degraded maneuvers. Figure 7 illustrates how a Selector
node is used to manage priorities in the execution of sub-

→

Takeoff ZED navigation

Figure 6. Behaviour tree calling skills sequentially. A Sequence is denoted
by a node with an arrow. Action nodes are in green.

trees. Selector’s children are visited in order from the left,
and the first one that returns Success or Running fixes the
status of the parent behaviour for that tick. In Figure 7

?

ZED navigation LiDAR navigation

Figure 7. Failure Management with BTs. The Selector node denoted with a
question mark returns the status of the leftmost child, but if this one fails,
it is the status of the child at its right that is returned.

it is easy to see that if a malfunction occurs when the
ZED navigation skill is running, then its corresponding
behaviour will return Failure, and the parent node will run
the LiDAR navigation behaviour instead. For Selector
nodes, the rightmost subtrees de facto implement fallback
behaviours. The BT of Figure 7 has been used in the second
scenario: the subtree managing the skills related to navigat-
ing relying on the ZED depth-camera for obstacle avoidance
has precedence over the rightmost branch. However, in case
of a malfunction of the camera at running-time, the ZED
navigation branch will return a Failure status, and the
LiDAR navigation will take over using a LiDAR to
generate a depth-map.

This transition model, implicitly encoded in the BT
structure, ensure that BTs are seen as highly reactive, mean-
ing that more important behaviours interrupt less important
ones. This represents, together with their modularity, one of
the main advantages of BT-based implementations [12]. In
the former example, we have seen how this functioning can
be turned to our advantage by programming an execution
tree that implements the flexibility of switching between
nominal, and failure branches in its own structure.

6. Experiments

6.1. UAV Platform

To perform the two scenarios described in Sec. 2, we
have used a DJI-M600: a 14kg-hexacopter equipped with
a DJI-A3 Pro flight controller as a low-level avionic and
a custom payload, enhanced with perception sensors, and
in charge of mission management thanks to the 3-layer
architecture as the one of Fig. 2. The payload is composed
of an embedded computer, a dedicated image processing
unit, an IR telemeter to assist take-off and landing, a stereo-
camera (ZED) for vision-based navigation, and a LiDAR and
an IMU for SLAM.

6.2. Communication Loss during BVLOS Flight

For this scenario, we performed a set of experiments, in
which we defined several inspection trajectories, and sim-
ulated the critical bandwidth zones. In this paper, we only
describe in detail the 3D mapping scenario; an experiment
on the inspection scenario is fully explained in the video
available in the robot skills website:
http://oara-architecture.gitlab.io/robot-skills/.

6.3. Obstacle Avoidance during 3D Mapping

The BT encoding the resilient behaviour for the 3D
mapping mission is depicted in Figure 6: in case of a failure
of the ZED depth-camera, the fallback LIDAR-based navi-
gation branch is executed. In each branch, Parallel nodes are
used to run concurrently the skill producing the depth-map
(ZED-based or LiDAR-based), and the motion trajectory.
In the recovery strategy, this trajectory not only control
the position of the drone, but also its heading using the
rotate head and lock head skills. This behaviour has been
tested in a 3D simulator, where skill managers interact with
the simulated environment and sensors. Figure 11 shows the
timeline of a nominal mission, in which no failure has been
reported: the BT has activated a sequence of goto straight
skill execution to follow the mapping trajectory, while the
LiDAR mapping was active (and finally interrupted by the
BT at the end of the mission). Figure 8 shows the 3D map
obtained in the nominal navigation mode.

Figure 8. Map built during the nominal mission. Bottom-right frame shows
a view of the simulator with the LiDAR scans.

Figure 12 shows the execution of skills in the scenario
including the ZED camera failure. The ZED Depthmap skill
reports a failure through a Resource Invariant Violation: the
state of the resource representing the ZED sensor has been
changed by the functional layer, invalidating the invariant of
the corresponding skill model. The ZED-based navigation
branch of the BT was then cancelled, interrupting the ongo-
ing motion (gray box of the goto straight skill), and then
executing the fallback LiDAR-based navigation branch, that
activates the LiDAR Depthmap skill, and now controls the
drone using rotate head, lock head and goto skills. Figure 9
shows the map obtained at the end of this scenario. We
clearly see the the left part of the area is not as well mapped
as in Figure 8, but this behaviour ensured the safety of the

drone, while providing a degraded information about the
environment.

Figure 9. Map built after a ZED failure. Bottom-right frame shows a view
of the simulator with the LiDAR scans oriented forward.

7. Conclusion

In this paper, we have presented a 3-layer architecture
for autonomous and resilient robot behaviours, that settles
on skill and resource models, and their associated execution
managers. The skill management layer has a central role,
both in the development and testing processes. We also pre-
sented how the skill interface can be used to both orchestrate
skill executions and detect failures, and how the Behaviour
Tree that performs the mission and the recovery strategies
can take benefit in using them. We have implemented two
specific scenarios with sensor or communication failures,
and demonstrated the effectiveness of the approach on ex-
periments and simulations.

We now investigate two further steps in the skill-based
development process: (1) taking profit of both the skill
formal models and the BT models to analyse the overall
behaviour of the drone using model-checking, and (2) using
automated planning techniques to help synthesizing auto-
matically some branches of the BT.

References

[1] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[2] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bogh,
V. Krüger, and O. Madsen, “Robot skills for manufacturing: From
concept to industrial deployment,” Robotics and Computer-Integrated
Manufacturing, vol. 37, pp. 282 – 291, 2016.

[3] C. Lesire, D. Doose, and C. Grand, “Formalization of robot skills
with descriptive and operational models,” in IROS, Las Vegas, NV,
USA (virtual), 2020.

[4] A. Klöckner, “ Interfacing Behavior Trees with the World Using
Description Logic,” in AIAA GNC Conference, Boston, MA, USA,
2013.

[5] M. Colledanchise, A. Marzinotto, D. V. Dimarogonas, and P. Oegren,
“The advantages of using behavior trees in mult-robot systems,” in
ISR, Munich, Germany, 2016.

[6] F. Rovida and V. Krüger, “Design and development of a software
architecture for autonomous mobile manipulators in industrial envi-
ronments,” in ICIT, Singapore, 2015.

http://oara-architecture.gitlab.io/robot-skills/

Figure 10. BT for the 3D Mapping scenario. In integrates constructs presented in previous figures. A purple trapezium denotes a Parallel behaviour, grey
rectangles are actions internal to the BT (here the Waypoint Writer node calculates the next waypoint to reach), and dashed rectangles indicate
subtrees that activate different skills (not fully reported here the sake of simplification).

Figure 11. Skill execution timeline of a nominal scenario without failure.

Figure 12. Skill execution timeline showing the reconfiguration behaviour.

[7] M. R. Pedersen and V. Krüger, “Automated Planning of Industrial
Logistics on a Skill-equipped Robot,” in IROS Workshop on Task
Planning for Intelligent Robots in Service and Manufacturing, Ham-
burg, Germany, 2015.

[8] L. Pitonakova, R. Crowder, and S. Bullock, “Behaviour-data relations
modelling language for multi-robot control algorithms,” in IROS,
Vancouver, BC, Canada, 2017.

[9] E. A. Topp, M. Stenmark, A. Ganslandt, A. Svensson, M. Haage, and
J. Malec, “Ontology-based knowledge representation for increased
skill reusability in industrial robots,” in IROS, Madrid, Spain, 2018.

[10] R. I. Brafman, M. Bar-Sinai, and M. Ashkenazi, “Performance level

profiles: A formal language for describing the expected performance
of functional modules,” in IROS, Daejeon, South Korea, 2016.

[11] M. Colledanchise and P. Ögren, “How behavior trees modularize
robustness and safety in hybrid systems,” in IROS, Chicago, USA,
2014.

[12] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A survey
of Behavior Trees in Robotics and AI,” preprint arXiv:2005.05842,
2020.

	Introduction
	Use Cases / Scenarios
	Communication Loss during BVLOS Flight
	Obstacle Avoidance during 3D Mapping

	Related Works
	Skill Management Architecture
	Skill and Resource Models
	Resources
	Skills

	Skill Management Architecture
	Skill-based Development Process

	Implementing Recovery Strategies with BTs
	Experiments
	UAV Platform
	Communication Loss during BVLOS Flight
	Obstacle Avoidance during 3D Mapping

	Conclusion
	References

