
Evaluating PDDL for programming production cells: a case study
Christoph Mayr-Dorn,

Alexander Egyed
Johannes Kepler University

Linz, Austria
firstname.lastname@jku.at

Mario Winterer, Christian
Salomon

Software Competence Center
Hagenberg GmbH
Hagenberg, Austria

firstname.lastname@scch.at

Harald Fürschuß
ENGEL Austria GmbH
Schwertberg, Austria

harald.fuerschuss@engel.at

ABSTRACT
A unique selling point for cyber-physical production system manu-
facturers becomes the easy with which machines and cells can be
adapted to new products and production processes. Adaptations,
however, are often done by domain experts without in-depth pro-
gramming know-how.We investigate in this paper, the implications
of using a planning-based approach for using a domain expert’s
knowledge to control the sequences of a robot and injection mold-
ing machine (IMM). We find that current engineering support is
insufficient to address testing, understanding, and change impact as-
sessment concerns during the evolution of a PDDL/HDDL domain
specification.

KEYWORDS
Robot programming, end-user programming, manufacturing au-
tomation, planning, symbolic AI, PDDL, HDDL

1 INTRODUCTION
A key enabler to achieving production of lot-size one at the cost of
mass production are flexible production systems. Such flexibility
implies that a manufacturer of a machine or production cell cannot
foresee all future use cases. Subsequently, a key competitive ad-
vantage for a machine manufacturer becomes the easy with which
machines and cells can be adapted to new products and production
processes. This reprogramming of machines is often done by do-
main experts that are typically non-programmers who have product
and production know-how but are not well versed in programming.

The problem for non-programmers becomes how to program
a machine or production cell while covering a sufficient set of
edge cases and situations to avoid frequent standstill. This quickly
becomes infeasible as beyond some trivial use cases the resulting
programs become unmaintainable: they are hard to understand,
hard to reuse, and hence hard to evolve for non-programmers.

Domain experts, however, have detailed know-how of the pro-
duction process, the stages the product needs to go through from
raw parts and material to the intermediate and final states, i.e., the
product’s production life-cycle. To this end, they are knowledgeable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

about the preconditions of each of these steps and what the effects
of the various stages are.

Thus the question emerges whether this know-how can be used
as the basis for defining production cell behavior. We limit non-
programmers to define (or reuse) preconditions and effects of ac-
tions, goals, and constraints, and have a planner determine what
each machine should be doing at what point in time. In this pa-
per, we investigate based on a case study whether PDDL (the The
Planning Domain Definition Language) [11] and its extension for
hierarchical planning problems HDDL [9] in combination with
contemporary planners are a suitable approach for this.

Along these lines, we aim to answer two research questions
(RQs): Specifically we want to obtain first insights into the prac-
ticality of applying such symbolic AI approaches for obtaining
control commands in an injection molding cell, hence to what ex-
tend is PDDL/HDDL suitable finding optimal robot and machine
sequences (RQ1). Additionally we ask to what extent adaptations
are needed to extend the definitions of a basic injection molding
cell for more advanced scenarios: hence to learn how complex adap-
tations of PDDL/HDDL specifications would become and thus what
practical implications for end user programming this brings (RQ2).

We find, while PDDL/HDDL could be the basis for planning, they
are currently impractical due to the following reasons. First, there
is little support to obtain cyclic plans for producing more than just
a few product instances. Second, plans are strictly sequential, thus
when any, even minor, expected deviation occurs, replanning has
to occur. And third, no solver we investigated is able to provide
time-optimized plans beyond trivial problem instances within an
acceptable amount of time.

The remainder of this paper is structured as follows: Section 2
introduces the investigated modeling languages and describes a
typical scenario production cell. In Section 3 we detail how to
encode the actions and constraints in our case study and some
modeling alternatives before we evaluate in Section 4 the runtime
behavior for solving various production scenarios. We then lay
out in Section 5 the benefits and drawbacks as well as practical
implications of using PDDL or HDDL. We discuss related work in
Section 6 before concluding the paper with an outlook on future
work in Section 7.

2 MOTIVATION AND BACKGROUND
2.1 Industry Context
ENGEL is a world leader in manufacturing injection molding ma-
chines (IMM) ENGEL also offers several industrial robots which are
usually delivered together with the machine as a production cell
that can be integrated into larger production lines.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


Woodstock ’18, June 03–05, 2018, Woodstock, NY Mayr-Dorn, et al.

The functionality and overall structure of a program in an IMM
production cell can be mapped to the following main steps that
together make up one production cycle: A realistic, non-trivial
sequence of actions in a IMM production cell consists primarily of
the following steps:

(1) IMM produces initial, raw part
(2) Robot picks raw part from mold
(3) Robot places raw part for cooling on intermediary location.

Alternatively, if the part was not correctly produced, the
robot puts the part in the garbage.

(4) Robot takes cooled part.
(5) Robot picks solidified part from previous run. This step in-

cludes moving safely towards and into the machinery area
and synchronizing with the opening of the mold.

(6) Robot inserts cooled, raw part into mold. If it is impossible
to insert components while already holding parts, then this
step needs to be postponed to the end of a cycle.

(7) IMM produces added-on final part. With multiple forms, the
IMM may also produce an additional, raw part simultane-
ously.

(8) Robot detaches and disposes sprue after moving out of the
machinery.

(9) Robot places solidified, final part. A part is placed either (a)
at the indicated placement area (e.g. conveyor belt), (b) at
the quality inspection site, if an inspection of the part was
requested, or (c) in the garbage for recycling, if the part was
detected as faulty, otherwise.

The two main use cases of an injection moulding machine are
molding parts or molding onto existing parts, each requiring just
a single form. In the above list of steps, the first use case consists
of steps 1, 2, 8, 9 while the second use case consists of steps 4,
5, 6, 7, 8, and 9. Our scenario combines both these aspects and
thus requires an IMM with two forms and hence added complexity.
Then the IMM exhibits two forms: one for molding the initial raw
part, and the other for molding the add-on onto the raw part to
obtain the final part. Depending on the necessary cooling time and
molding time, multiple intermediary cooling locations are required
for maximizing throughput.

Programming this behavior in detail requires specifying (i) how
to bring the cell into a ready production state from an unknown
previous shutdown, (ii) transitioning into a cyclic production pro-
cess, (iii) and handling expected deviations for quality inspection
and faulty pieces. The first part requires to consider all different
states the production cell might be in when it gets shut down due
to production completion, safety stop, program exception, etc. This
potentially results in parts remaining in the mold, on the robot
gripper, on cooling locations, etc. that need to be removed from the
cell or alternatively the production process continued with.

The second part involves the action that are needed (or not yet
needed) for a regular cycle. In the simplest case of just molding a
part and then placing it on the conveyor, the regular cycle is imme-
diately reached. In a complicated case involving multiple cooling
locations, the IMM will mold only raw parts until the locations are
all filled up, and only then will the robot be picking a cooled, raw
part for add-on molding. Then the cell will reach a cyclic behavior
where the IMM molds a raw part (for cooling) and a final part at

the same time, and the robot will place a raw part for cooling and
retrieve a cooled part for add-on molding in every cycle.

Once the cyclic behavior is reached, the cell behavior remains
mostly identical from one cycle to the next with exception to the
occasional placement of quality inspection or faulty parts. Typically
the goal is to optimize this cyclic behavior for maximum utilization
of the IMM, respectively maximizing production throughput of the
cell with little opportunity or need to significantly re-plan the cycle
upon a deviation (i.e., QA inspection or faulty part).

2.2 Introduction to PDDL
The Planning Domain Definition Language (PDDL) [11] emerged in
the symbolic AI community more than two decades ago to describe
planning problems in a generally agreed upon format. PDDL con-
sists of two types of artifacts: a domain description and a set of one
or more problem description(s). The former describes the objects
that are known in the domain, the predicates over these objects (i.e.,
the fact that can be known about these object), and actions that
describe under which preconditions certain effects are obtained.
The latter artifacts describe a concrete problem instance using the
vocabulary from the domain definition. A problem description thus
defines which object instances exist, which predicates over these
objects are true and the desired goal.

Listing 1: PDDL Domain description excerpt
1 ( define ( domain imm)
2 ( : requirements : s t r i p s . . . )
3 ( : types mold form robo t g r i p p e r p roduc t . . . )
4 ( : predica tes
5 ( i sA t ?g − r obo t ? pos − waypoint )
6 ( emptyGripper ?g − g r i p p e r )
7 ( onGr ipper ?p − produc t ?g − g r i p p e r )
8 ( po sFo rP i ckProd ? pos − waypoint )
9 . . .
10 )
11 ( : functions
12 ( countProdInForm ?m − mold )
13 ( p r o d S t a t e ?p − produc t )
14 )
15 ( : act ion pickRaw
16 : parameters ( ? g − g r i p p e r ?p − produc t . . . )
17 : precondition ( and
18 ( not ( onGr ipper ?p ?g ) )
19 ( emptyGripper ?g )
20 ( i sA t ? r ? pos )
21 ( po sFo rP i ckProd ? pos )
22 )
23 : e f f e c t ( and
24 ( onGr ipper ?p ?g )
25 ( not ( emptyGripper ?g ) )
26 ( decrease ( countProdInForm ?m) 1 )
27 ( assign ( p r o d S t a t e ?p ) 3 ) ) ) )

Take the PDDL domain description excerpts in Listing 1. It de-
fines the domain imm (line 1), and the required language features
(mostly omitted for lack of space, line 2). The available domain
object types are mold, form, robot, gripper, and product (line 3). The
shown set of predicates in lines (5-8) allow to obtain the robot’s
location, whether (one of its) gripper is empty, whether a particular
product is on the gripper, and whether the selected waypoint is suit-
able for picking the product out of the form, respectively. When the
PDDL solver supports numeric fluents, it is often more efficient and
readable to express predicates as functions (line 12-13). For example,
we count how many products are in a mold to be able to ensure that



Evaluating PDDL for programming production cells: a case study Woodstock ’18, June 03–05, 2018, Woodstock, NY

in a multi-form IMM setup all molded products are picked from
the individual forms before the next cycle of molding occurs. We
also use functions to model each product’s life-cycle state (from a
non-existing product, being raw molded, cooling, addon molding,
and placed on the conveyor belt) as an integer.

In our example, we define the action pickRaw for picking a raw
product from one form of the mold. The parameters (line 16) define
the set of objects that are needed to be checked whether this action
can be executed. The example set of preconditions (line 17-22)
ensure that the product to be picked is not already on the gripper,
that the gripper is empty, that the robot is at a waypoint, and that
this waypoint is the correct one for picking the product. The effect
of this action is then that the product is on the gripper, the gripper
is no longer empty, there is one less product in the mold, and that
the product’s new state is “rawpicked” as represented by ‘3’.

By default, a planner is time agnostic. All actions occur instanta-
neous. Modelling actions that require a certain amount of time is
possible with PDDL 2.1 durative-actions or with PDDL+ Processes
and Events. These two varants are expressively equivalent, the latter
more verbose [4], though.

Listing 2: PDDL Problem description excerpt
1 ( define ( problem example1 ) ( : domain imm)
2 ( : ob jec t s prod1 prod2 − produc t
3 robo t 1 − r obo t
4 g r i p p e r 1 − g r i p p e r
5 mold1 − mold
6 form1 − form
7 homePos withMold − waypoint
8 )
9 ( : i n i t
10 ( emptyGripper g r i p p e r 1 )
11 ( po sFo rP i ckP rod withMold )
12 ( i sA t robo t 1 homePos )
13 (= ( countProdInForm mold1 ) 0 )
14 (= ( p r o d S t a t e prod1 ) 0 )
15 (= ( p r o d S t a t e prod2 ) 0 )
16 )
17 ( : goal ( and
18 (= ( p r o d S t a t e prod1 ) 8 )
19 (= ( p r o d S t a t e prod2 ) 8 )
20 ) )
21 ( : metric
22 minimize ( t o t a l − t ime ) ) )

One possible problem instance for our example is provided in
Listing 2. A problem specification refers to the domain specification
(line 1), then defines the available object instances (line 2-8). In our
case, we define two products, a single robot, grippers, mold, and
form, as well as two robot waypoints. We then initialize the gripper
as empty (line 11), and mark the withMold waypoint to be the one
for picking the raw product (line 12), set the numbers of products
in the mold to zero (line 14), and set the products’ initial state to
zero (lines 15 and 16). Note that in a closed world scenario such as
ours, all predicates that are not explicitly set to true are assumed to
be false. Next, we define the goals, i.e., the target state of some (or
all) of our defined objects. Here we aim to have both products in
state “complete” represented here by 8 (lines 19 and 20). When the
desired plan should require as little time as possible (e.g., by finding
simultaneously executable durative actions) we additionally specify
that the the total-time needs to be minimized (line 22).

Domain specification and problem specification are then handed
over to a planner. The task of a planner is then to find the sequence

of actions brings the system state to the goal state (as defined in the
problem definition). Constraints that may not be violated during the
plan are either described as part of the problem’s goal description (if
they are problem specific, such as returning the robot to a specific
waypoint at the end) or are already defined as part of the domain
if they need to hold for every problem specification (e.g., molding
cannot happen when a robot is at the pick waypoint).

Depending on the available actions and their preconditions as
well as the size of the problem (i.e., number of object instances
that are relevant for obtaining the goal), the planner needs to ap-
ply heuristics to intelligently navigate (or prune) the search space.
Various approaches are applied that are beyond the scope of this
introduction, see [12] for an overview of (PDDL) planners.

2.3 Introduction to HDDL
The Hierarchical Domain Definition Languages was recently pro-
posed to provide a unified representation of hierarchical task net-
work (HTN) planning problems as an extension of PDDL. HTN
planning differs from generic planning in the provisioning of do-
main knowledge for guiding the planner in finding a sequence of
actions. The domain knowledge comes in the form of a task decom-
position hierarchy: a high-level task is broken down into lower level
tasks (iterativly) until a task maps onto an action that can become
part of a plan. For each higher-level task there might be one or
more alternative lower-level tasks or actions. This form of guidance
is useful when its known up-front that certain tasks can only be
executed in a particular (partial or total) order. In the IMM domain,
for example, a product always needs to be molded first before it can
be picked, and only then placed on a conveyor. The concrete plan
to carry out this sequence of tasks, however, depends very much
on the problem instance and differs especially in complex cells in
which form to mold a product in, where to place it for cooling, etc.

HDDL reuses the vocabulary of PDDL and defines the following
additional constructs. A task defines the parameters that are used
as input. A method then realized a task by optionally specifying
additional parameters, preconditions when themethod is applicable,
and the order of zero, one, or more subtasks. These subtasks then
refer to tasks and/or actions. HDDL comes with constructs for
totally ordering the subtasks or to merely define some partial order.

In our example, we take the PDDL domain specification from
above and insert after line 27 the HDDL elements provided in List-
ing 3. The HDDL excerpt in Listing 3 defines a high-level task
t_produce (line 1) for which a single refining method m_produce
exists (line 4) . The m_produce method specifies that first a task
t_moldRaw needs to be refined to atomic actions (not shown),
then two actions (pickRaw and moveTo) follow, and then the task
t_placeFinal needs to be refined (lines 8-13). Note that a method
may define more parameters than the task it implements (line 5).
The solver then needs to find suitable object instances for these
extra parameters based on the method’s precondition or any ac-
tion’s preconditions found during refinement. For the latter task
t_placeFinal two refinement methods m_placeOnConveyor (line 20-
27) and m_placeInTrash exist (line 28-34), each delegating to their
respective action (not shown). Which of the two methods the plan-
ner selects is guarded by the precondition on the product’s state
(line 23 and 31, respectively).



Woodstock ’18, June 03–05, 2018, Woodstock, NY Mayr-Dorn, et al.

Listing 3: HDDL Domain description example extension
1 ( : task t _p roduce
2 : parameters ( ? p − produc t )
3 )
4 ( :method m_produce
5 : parameters ( ? p − produc t ?g − g r i p p e r
6 ? p1 ? p2 − waypoint ? r − r obo t )
7 : task ( t _p roduce ?p )
8 : ordered −subtasks ( and
9 ( t_moldRaw ?p )
10 ( pickRaw ?p ?g )
11 ( moveTo ? r ? p1 ? p2 )
12 ( t _ p l a c e F i n a l ?p ?g )
13 )
14 ( : task t_moldRaw
15 : parameters ( ? p − produc t )
16 )
17 ( : task t _ p l a c e
18 : parameters ( ? p − produc t ?g − g r i p p e r )
19 )
20 ( :method m_placeOnCoveyor
21 : parameters ( ? p − produc t ?g − g r i p p e r ? pos − waypoint )
22 : task ( t _ p l a c e F i n a l ?p ?g )
23 : precondition ( and
24 (= ( p r o d S t a t e ?p ) 3 ) )
25 : ordered −subtasks ( and
26 ( placeOnConveyor ?p ?g ? pos )
27 ) )
28 ( :method m_place InTrash
29 : parameters ( ? p − produc t ?g − g r i p p e r ? pos − waypoint )
30 : task ( t _ p l a c e F i n a l ?p ?g )
31 : precondition ( and
32 (= ( p r o d S t a t e ?p ) 4 ) )
33 : ordered −subtasks ( and
34 ( p l a c e I nT r a s h ?p ?g ? pos ) ) )

3 CASE STUDY
One of the main factors influencing the modeling of the domain
is the set of supported features of the solver. Hence we chose the
ENHSP planner [18] for PDDL+ and the PDDL4J-TO planner [13]
for HDDL. Given their different feature sets we ended up with three
different domain specification variants:

IMMproc utilizes PDDL+ and thus models the duration of molding and
cooling actions.

IMMcost avoids duration for performance reasons and utilizes cost
functions instead to drive the planner towards more optimal,
parallel usage of resources.

IMMhtn reuses the action and predicate definitions from IMMcost and
adds HDDL constructs for task decomposition but comes
without fluents for the product life-cycle state and costs as
the PDDL4J-TO planner doesn’t support functions.

3.1 Basic IMM Cell Domain Specification
The two most typical use cases consist of molding a new product
or to add-on mold onto a raw product, then placing the molded
product on a conveyor belt, at a QA inspection station, or in the
trash. Our problem domain specification, thus, contains actions to
support these two use cases independently.

We decided to keep the IMM domain specification as simple
as possible while retaining the complexity in terms of robot and
machine interaction, their sequences, and, hence, interleaving of
different product life-cycles. We thus chose not to model any trig-
gering of a conveyor belt or stacking products thereon or detailed
robot movement paths.

We also abstract from all details of the molding process (such
as multi-stage injection) and only track in which of the potentially
many mold’s forms a product is about to get molded, currently gets
molded, or is molded and ready for picking.

Picking and placing is modeled via the robot’s gripper, of which
there can be more than one. If there are more than one gripper, they
are assumed to be usable in parallel (i.e., non-overlapping, able to
carry one product per gripper simultaneously). Having multiple
robots defined in the problem file is not sensible as we didn’t model
conflict avoidance and hence more than one robot would be allowed
to occupy the same waypoint at the same time.

We summarize the differences of the three domain specification
alternatives listed above in Table 1 (top) All three domain modeling
variants come with the same set of types and share a significant
set of actions. IMMcost comes with the shorted specification as
the verbose specification of processes and events as found with
IMMproc is not needed. IMMhtn comes with more than double
the lines of code compared to IMMcost, as the specification of the
task hierarchy needs to describe not only the standard sequence
of moulding but also skip actions in case a product is left in the
production cell from a previous run. The resulting hierarchical task
network is available as SOM, displaying tasks for production of a
virtual product on the left and an addon molded product on the
right with actions used for both “processes” depicted below the
dashed line. The eleven grounded actions are in bold font, The 10
tasks and 23 methods are given in italics.

3.2 Extended Domain Specification
We then imitated an engineer adapting the basic domain speci-
fication to integrate virtual and addon product molding with an
intermediary cooling station along the lines of the motivating sce-
nario in Section 2. In Table 1 (bottom) we list the main differences
of IMMprocR+A, IMMcostR+A, and IMMhtnR+A from their basic
version, and amongst each other.

For each modeling variant the main driving change is the dif-
ferentiation between virtual and addon product as reflected in the
product life-cycle states, the different grippers applicable in these
states, and the distinction between two forms. Specifically in a
product’s live-cycle we distinguish between having molded a raw
product (in the raw form) requiring cooling (i.e., precool), being
raw when cooled, and being addon when coming out of the second
addon form. We additionally assume that a product in the former
states require a separate gripper (i.e., the raw gripper) from a prod-
uct in the latter addon state (i.e., the addon gripper) due to having to
be picked differently. These changes come with wide reaching im-
pact on action parameters, preconditions, or effects, that otherwise
remain semantically the same. For example, the logic for picking
and placing of the final addon product remains the same, however
needs to become aware of picking with the correct gripper from
the correct form.

Mold preparing and molding related actions were affected the
most as we additionally allow simultaneously molding of raw and
addon product, hence also existing actions for individual, separate
molding of raw and addon product has to be updated.

Having to track a particular product instance at a specific cooling
location came with additional changes. These changes, however,



Evaluating PDDL for programming production cells: a case study Woodstock ’18, June 03–05, 2018, Woodstock, NY

Table 1: Basis and Extended Domain Specification Comparison

IMMproc IMMcost IMMhtn
types product, mold, form, gripper, robot, waypoint identical identical
predicates 13: one for robot position, target position, currently

moving, locking position for entry, gripper empty, prod-
uct on gripper, and six for checking positions

9: checks for ongoing of molding, moving, or
target position/locking no longer needed

18: same as IMMcost plus replacement for the un-
supported functions: form state, product quality
state, and life-cycle states expressed as 2, 3, and 4
predicates.

functions 6: count of molded products in form, product out-
come state, product lifecycle, form state, progress of an
PDDL+ process, passed time

5: passed time and progress no longer needed,
but cost now tracked

not supported by solver

robot
movement

moveTo (triggering start), movingTo (P) of a
robot between waypoints, arrivedAtPos (E)

moveTo (adapted, instantaneous) same as IMMcost

mold
preparing

pickForInsertion, insertRawProductInForm, assignVirtu-
alProductToForm

the same but precondition for current ongo-
ing molding not needed, includes costs

identical to IMMcost with functions replaced by
predicates

molding trigger molding with nextCycle, molding (P), markVir-
tualProductForm (E), markAddonProductForm (E), mold-
Done (E), rawFormFilled (E), addonFormFilled (E),

restructuring into nextCycleVirtual and
nextCycleAddon for instantaneous molding

same as IMMcost with functions replaced by pred-
icates

picking pickFromRawPos, pickFromAddonPos same as IMMproc same as IMMcost with functions replaced by pred-
icates

placing placeInTrash, placeForTesting, placeOnConveyor same as IMMproc same as IMMcost with functions replaced by pred-
icates

T/M n/a n/a 10 tasks / 23 methods
A/P/E 10 actions / 3 processes / 6 events 11/-/- 11/-/-
LoC ∼300 ∼205 ∼490

IMMprocR+A IMMcostR+A IMMhtnR+A
types additional subtypes of form: formRaw, formAddon, and

subtypes of gripper: gripperRaw and gripperAddon
same as IMMprocR+A same as IMMprocR+A

predicates 16: same as IMMproc, additional 2 predicates for product
as position mapping, and empty position checking

12: same as IMMcost and same additional ones
as in IMMprocR+A

22: same as IMMhtn, same additional ones as in
IMMprocR+A and additional for cooling state and
additional QA state to differentiate between raw
and addon product molding result

functions same as IMMproc same as IMMcost n/a
robot mov. same as IMMproc same as IMMcost same as IMMhtn
mold
preparing

adapted to differentiate between grippers, to pick from
cooling place only with gripperRaw, insertRawProduc-
tAndAssignToForm same but limited to gripperRaw and
formAddon, assignVirtualToForm adapted to use only
formRaw, (affects parameters only) pickForInsertion uses
cooling waypoint: precondition and effect extended

similarily adapted to differentiate between
grippers and forms, similar adaptations as in
IMMprocR+A

similarily adapted to differentiate between grip-
pers and forms, similar adaptations as in IMM-
procR+A

molding 4 events updated: markRawFormUse/markAddonFor-
mUse and fillForms limited to their form type; the rest
remain identical (affects parameters only)

updated nextCycleAddon and nextCycleVir-
tual to different product lifecycle state in pre-
condition and effect, differentiating between
form and gripper types, adding of new action
nextCycleBoth to allow simultaneous molding
of virtual and addon product with lower cost.

same adaptations and new action as in IMM-
costR+A but with function/fluent usage replaced
by predicates, no usage of cost

picking adapted to be limited to their respective gripper and
form types, pickRaw needs updated product state to
signal ready for cooling,

same adaptation as for IMMprocR+A same adaptation as for IMMprocR+A, but using
predicates instead of functions for product lifecy-
cle and QA state

cooling new trigger action placeForCooling, process, and com-
pletion event

new action placeForCooling, with immediate
cooling effect very similar to IMMprocR+A

same new actions as in IMMcostR+A, but using
predicates instead of functions for product lifecy-
cle and QA state

placing duplicated action for placing in trash to differentiate
between raw and addon product

same duplication for placing in trash as in
IMMprocR+A

same duplication for placing in trash as in IMM-
procR+A

T/M n/a n/a 12 tasks; 29 methods
A/P/E 12 actions / 4 processes / 7 events 14/-/- 14/-/-
LoC ∼365 ∼280 ∼660
new LOC ∼65 ∼70 ∼170
diff LOC ∼15 ∼20 ∼80

are very local, i.e., only affect the existing fetching of a raw product.
Model elements for moving the robot around the production cell
required no changes at all.

Inspecting Table 1 in more detail, we notice, that the same
type and extent of changes have to be made from the basic to
the extended model version for every modelling variant. While the
process- and cost-based variants require about the same amount of
new lines of code (and have around the same amount of changed
lines of code), the hierarchical task network-based variant requires
more than twice as many new lines of code and four times as many
changed LoC. On root cause of this many changes is the encoding

of life-cycle states as predicates and not as a fluents. And second,
the hierarchical task networks needs to be adapted to contain addi-
tional domain know-how how the two stages (i.e., raw and addon
molding) can be combined, and under which circumstances certain
tasks can be skipped.

3.3 Lessons Learned
Several planning challenges and tutorials have a domain where one
or multiple robots, rovers, trucks, or other objects need to move
between multiple locations, positions, or places in an optimal or
resource-constraint manner. Hence the planner has to decide which



Woodstock ’18, June 03–05, 2018, Woodstock, NY Mayr-Dorn, et al.

path and which sequence of locations to take. While also a robot in
an IMM cell has to move between different positions for picking and
placing, we decided against modeling the various movements paths
(i.e., the intermediary positions) in detail as this results merely in
a larger search space for the solver (and thus noticeable increased
search time) without resulting in better solutions. Typically the
positions to reach are determined by the transition of a product
state, e.g., from being in the mold, to being on the conveyor with
few alternative positions where these actions can be executed, and
few, if any, alternative movement paths. The consequence of such
simplification is that any plan will contain only the endpoints of a
robot movement, and thus a dedicated subsystem needs to translate
these endpoints into a precise, detailed path via potentially multiple
intermediary positions.

Note that this modeling simplification works under the assump-
tion that a only a single robot operates within the cell, or multiple
robots that have no overlapping operation range, or robots that
when they occupy the same area will block the overlapping area
only for an insignificantly short amount of time (where “insignif-
icant” implies that the maximum amount of time one robot has
to wait for the other to move away will not affect its execution
plan). As soon as the movement of one robot affects the ability of
the other to carry out its task within the allocated time, then their
interactions (i.e., their movement paths and locking/reserving of
path segments or areas) needs to be explicitly modeled.

4 PERFORMANCE COMPARISON
In addition to a qualitative assessment of the different domain mod-
eling approaches, in this section, we analyse the differences in the
solvers’ runtime performance. We defined five problems (contain-
ing one to five products to go through the molding process) that
represent different starting configurations for the simple produc-
tion scenario (𝑃1𝑏𝑎𝑠𝑒 to 𝑃5𝑏𝑎𝑠𝑒 ) as well as the extended production
scenario (𝑃1𝑒𝑥𝑡 to 𝑃5𝑒𝑥𝑡 ). The simple scenario includes one form
and one gripper and supports molding of a product in one go, or
addon molding onto a raw product. The extended scenario comes
with two forms, two grippers, four cooling places, and supports
simultaneous molding of a raw product, and addon molding once it
has cooled down. The form can also be used to mold either only the
raw product, or only the added-on, final product separately. P1 and
P2 represent a regular production run, for P3 to P5, we specify left
over products from a previous run that may still reside in the mold
form and/or on the gripper. As the extended production cell also for
much more variety to have products left over from a previous run,
we created additional problem files (𝑃6𝑒𝑥𝑡 to 𝑃7𝑒𝑥𝑡 ) containing six
and seven products, respectively. In 𝑃7𝑒𝑥𝑡 , we have one product
on either gripper, a product in either form, a product at one of
the cooling locations, and aim to mold two regular products, one
that goes to the quality inspection station, and one to be placed on
the conveyor. In the scenario, the five products from the previous
round have to be discarded, rather than continuing with their pro-
duction process. The used domain specifications and problem files
are available as part of the supporting online material [1].

We adapted each problem specification across the three mod-
eling variants to be as close as possible (while being semantically
identical) to enable a fair comparison. For the cost-based model

Figure 1: Solver Performance: average runtime (in seconds).

variant we additionally compare the runtime for finding any so-
lution (IMMproc_Sat), i.e., a satisfiable solution, and an optimal
solution (IMMproc_Opt) for a total of four solver configurations.
We collected average runtime measurements for each problem in-
stance and solver configuration pair on a standard laptop, using the
solvers’ default configuration over five iterations. Figure 1 depicts
the average runtime in seconds for each solver configuration and
problem instance (note the graphs’ log-scale y-axis).

We observe that for the simple scenario there is not much rele-
vant difference among the time-unaware models with the runtime
remaining between 0.5 and 1.4 seconds, regardless of problem in-
stance. In contrast the time-aware model quickly grows to beyond
several seconds to over a minute for 𝑃5𝑏𝑎𝑠𝑒 . The extended scenario
show a similar behavior with little difference for 𝑃1𝑒𝑥𝑡 to 𝑃5𝑒𝑥𝑡 but
clearer distinction beyond that. As the complexity of the problem
increases in 𝑃6𝑒𝑥𝑡 and 𝑃7𝑒𝑥𝑡 , we see that finding a cost optimal
solution to require more time, followed by the cost satisfiable one,
and the hierarchical task network-based approach being the fastest.
The time-aware model exceeds six minutes of runtime with 𝑃4𝑒𝑥𝑡
and even ten minutes with 𝑃7𝑒𝑥𝑡 .

In summary, obtaining time-aware plans requires one to two
orders of magnitude more time than time-unaware plans.

5 DISCUSSION AND IMPLICATIONS
Towards flexible production system programming, the main chal-
lenge is not just finding optimal production sequences but the more
difficult task of enabling the extension of standard behavior to
support novel use cases not foreseen by the manufacturer.

Answering RQ1 on whether PDDL or HDDL (and respective
solvers) are suitable for finding optimal production sequences, we
conclude that, in general, it’s a feasible approach but far from prac-
tical applicability for the following reasons.

One needs to keep track of individual product instances in a
PDDL/HDDL plan, when each of them is in a different production
state but present in a production cell at the same time. The con-
sequence of having multiple product instances is the difficulty of
turning a sequential plan (as provided by the solver) into a cyclic one
as an IMM typically produces not one but many identical products.



Evaluating PDDL for programming production cells: a case study Woodstock ’18, June 03–05, 2018, Woodstock, NY

Especially difficult is obtaining a transition from an initialization
phase with various amounts of cleanup actions, into a cyclic plan
with hardly any unexpected deviations. Even in the case of a minor,
expected deviation such as having to place a product onto the qual-
ity inspection site would invalidate a plan, subsequently requiring
re-planing all the while continuing with the production. Planning
duration, however, is not at the time scales needed for production
yet. From the performance evaluation, we learn that time-unaware
planning is reasonably quick, in a real production environment,
however, time efficient plans are absolutely necessary.

An interesting mitigating approach here could be to derive up-
front multiple start and intermediary conditions and generate a
set of plans. Process mining approaches from the BPM community
could then perhaps extract a unifying process model that accounts
for most of the possible deviations, and then this process model
controls the production cell.

We observed an additional limiting behavior of HDDL: the order
of tasks to solve influenced the solving duration and sometimes
even the ability to generate a plan at all. Hence, additional care is
required to formulate the problem instance.

Answering RQ2 on the extent of changing domain specifica-
tions to support new use cases, we come to the conclusion that
additional research and engineering support is needed to support
domain experts that are typically not PDDL or HDDL experts. As we
have observed over the previous pages, supporting new use cases
is not just a matter of dropping in additional logic at one place
and keeping everything else the same. In our real-world inspired
use case, the necessary cascading changes affected large parts of
the overall domain specification (regardless of the modeling vari-
ant), here due to product a different life-cycle as well as distinction
between form subtypes and gripper subtypes. Understanding all
the affected locations in the domain definition and ensuring that
any changes are correctly made is non-trivial. Given the current
limitations in engineering support (see Section 6), we hypothesize,
that this procedure is too complicated for the typical domain en-
gineer to conduct in a timely and satisfactory manner.Especially
the HDDL-based approach requires a detailed understanding what
the state of a product and production cell is in after each task: rele-
vant to correctly define skip actions that become necessary when
products remain in the cell from the previous cycle.

One future way to mitigate this aspect could be restricting the
engineers’ ability to modify the complete domain specification
to clearly identified extension points. For example, in our case,
modeling a products life-cycle stats and their transitions as a UML
state chart and from this model then derive predicates. Exemplary,
complementary research directions could be investigations into
algorithms that detect the impact of changes across PDDL/HDDL
actions, or algorithms that detect logical inconsistencies among
preconditions due to adaptations. Deriving of partial plans with
explanations where of why a solver found no overall plan would
be equally helpful to fixing inconsistent domain specifications or
determining unsolvable problem instances.

Even as HDDL comes with additional specification overhead, it
has more potential to become industry relevant than pure PDDL.
The primary reason is in it’s ability to include domain specific
know-how and thus more efficiently derive plans. Moreover, re-
stricting the possible behavior is typically an advantage in industrial

settings to obtain more predictable behavior compared to a pure
PDDL-based domain specification. In the latter case a planner might
come up with surprising, potentially dangerous, behavior for a new,
previously unseen problem setting. This quickly becomes a safety
relevant aspect when humans participate in a production cell.

6 RELATEDWORK
There have been some efforts over the past two decades to apply
PDDL in industrial settings to various degrees of success. Wally et
al. [22] describe one possible way to represent IEC 62264 models in
PDDL and evaluate it for an assembly process scenario involving
autonomous shuttles and robots. Their primary focus is on how to
map IEC 62264 models in general to PDDL. They similarly experi-
enced performance problems when considering temporal aspects.
They utilized the LPG-td PDDL solver [6], that supports durative
actions to this end. Huckaby et al. [8] use SysML to model system
capabilities and process specification for subsequent transforma-
tion into PDDL. They evaluated their approach by generating plans
for coordinating multiple robots in mounting a single door onto a
car. Their approach remains unaware of action duration. No per-
formance discussion on plan generation is available. Rimani et al.
[15] also describe a SysML-based approach for manually generat-
ing HDDL specifications. In constrast, Rogalla et al.[16] propose
directly encoding production and planning know-how in PDDL.
Their evaluation scenario consisted of a rotary transport system
to which four production stations are connected. Optimizing the
makespan of a set of 10 orders or more didn’t yield an optimal plan
within 30min of search time.

Hoebert et al. [7] propose a mapping from the Web Ontology
Language (OWL) to PDDL for speeding up the reconfiguration
of robot movements and applied it to a pick and place scenario.
Performance information on plan generation was provided only for
individual product picking sequences with no focus on optimizing
multiple production instances within a cell. Kootbally et al. [10]
similarly use a semantic description from which PDDL domain and
problem files are generated to control a robot preparing a parts that
are required for the assembly of a single product.

Bolender et al. [3] utilize PDDL as a fallback mechanism for self-
adaptation of an injection molding machine, when their primary
Case-Based Reasoning approach provide no suitable adaptation plan
due to lack of similar situations in the part. Their work differs from
ours in two key aspects: first, the problem focuses on configuring
molding parameters for the next cycle and not how to optimally
sequence multiple production cycles with parallel behavior as in
our case. Second, their problem specification is fixed and there is no
need to adapt it, whereas we investigate what the implications are
on extending the specification to include additional behavior. Setta
et al. [19] applied planing with PDDL to optimally schedule oil
tanker arrival and unloading at a refinery dock. Their experiments,
even while not considering temporal aspects, hit memory and run-
time limits when trying to optimize a plan. Fritz [5] investigated
the use of PDDL for deriving the sequence of commands for a
CNC machine and found it unusable due to lack of representing
geometric properties and operations.

Some work aims to overcome the limitations of PDDL to ade-
quately handle uncertainty and repetition on the shopfloor. Rogalla



Woodstock ’18, June 03–05, 2018, Woodstock, NY Mayr-Dorn, et al.

and Niggemann [17] describe an approach to deal with the non-
determinism of production, e.g., the uncertainty what a sensor
reading will be or to obtain runtime information from the shopfloor.
The authors propose to solve subproblems encoded in PDDL first
that mitigate this uncertainty and then apply regular planning. Yet,
their application is limited to production of single products, unable
to model cyclic production or coordination of parallel production
steps involved. Asai and Fkunaga [2] describe a technique for de-
riving cyclic plans. The limitations are that only identical products
can be produced, in the exact same order, and multiple instances of
the production plan cannot interleave. Hence a new cycle with the
next product can only start upon finishing the prior product.

Engineering of PDDL domain and problem files has received
some attention with support for integrated development environ-
ments (IDEs) appearing over the past years. Strobel and Kirsch
[20] compared existing engineering support such as PDDL Studio
[14], itSimple[21], PDDL-mode1, Planning.domains2, and vscode-
PDDL3 before introducing their MyPDDL IDE. For the purpose of
this paper, we have used VSCode PDDL, which is a plugin for Visual
Studio Code. All these engineering support tools focus primarily
on writing syntactically correct domain and problem files. A major
short coming is in debugging and testing of domain specifications,
or understanding the impact of changes when evolving the domain
specification. To the best of our knowledge, there is currently no
support for determining whether a solver fails to find a plan be-
cause the domain specification contains a logical error, the problem
specification describes an unsolvable problem (while assuming the
domain to be correct), or whether the problem is just too complex
for the solver to find a solution in an acceptable timeframe.

7 CONCLUSIONS
In this paper we analysed to what extent a non-programmer would
have to adapt a domain specification to evolve a standard injection
molding production cell to a complex, realistic scenario. We identi-
fied three main reasons why PDDL/HDDL are not yet practically
applicable for this purpose: performance of solvers, lack of cyclic
production plans, and most importantly for domain experts: insuf-
ficient engineering support during the evolution task itself. Yet,
we expect that HDDL/PDDL will play a major part in production
control, first in highly adaptive environments where true batch size
one production needs continuous replanning anyway. Here HDDL
might be more practically relevant than PDDL as it enables to in-
tegrate more domain know-how for planning, thereby reducing
time-to-plan and obtaining more predictable plans.

ACKNOWLEDGMENTS
The research reported in this paper has been funded by BMK,
BMDW, and the State of Upper Austria in the frame of SCCH,
part of the COMET Programme managed by FFG.

REFERENCES
[1] [Authors.]. Supporting Online Material.

https://figshare.com/s/8315f52edb597fb7836a. Accessed: 2021-12-15.

1http://rakaposhi.eas.asu.edu/planning-list-mailarchive/msg00085.html
2http://planning.domains/
3https://github.com/jan-dolejsi/vscode-pddl

[2] Masataro Asai and Alex Fukunaga. 2014. Fully Automated Cyclic Planning for
Large-Scale Manufacturing Domains. Proceedings of the International Conference
on Automated Planning and Scheduling 24, 1 (May 2014), 20–28.

[3] T. Bolender, G. Burvenich, M. Dalibor, B. Rumpe, and A. Wortmann. 2021. Self-
Adaptive Manufacturing with Digital Twins. In 2021 2021 International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)
(SEAMS). IEEE Computer Society, Los Alamitos, CA, USA, 156–166.

[4] Maria Fox and Derek Long. 2006. Modelling mixed discrete-continuous domains
for planning. Journal of Artificial Intelligence Research 27 (2006), 235–297.

[5] Christian Fritz. 2016. Automated Process Planning for CNC Machining. AI
Magazine 37, 3 (2016).

[6] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. 2006. An Approach to
Temporal Planning and Scheduling in Domains with Predictable Exogenous
Events. J. Artif. Int. Res. 25, 1 (feb 2006), 187–231.

[7] Timon Hoebert, Wilfried Lepuschitz, Markus Vincze, and Munir Merdan. 2021.
Knowledge-driven framework for industrial robotic systems. Journal of Intelligent
Manufacturing (2021), 1–18.

[8] Jacob Huckaby, Stavros Vassos, and Henrik I. Christensen. 2013. Planning with a
task modeling framework in manufacturing robotics. In 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. 5787–5794.

[9] Daniel Höller, Gregor Behnke, Pascal Bercher, Susanne Biundo, Humbert Fior-
ino, Damien Pellier, and Ron Alford. 2020. HDDL: An Extension to PDDL for
Expressing Hierarchical Planning Problems. Proceedings of the AAAI Conference
on Artificial Intelligence 34, 06 (Apr. 2020), 9883–9891.

[10] Zeid Kootbally, Craig Schlenoff, Christopher Lawler, Thomas Kramer, and Satyan-
dra K Gupta. 2015. Towards robust assembly with knowledge representation
for the planning domain definition language (PDDL). Robotics and Computer-
Integrated Manufacturing 33 (2015), 42–55.

[11] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. 1998. PDDL—The Planning
Domain Definition Language. Technical Report CVC TR98003/DCS TR1165. Yale
Center for Computational Vision and Control, New Haven, CT.

[12] Tim Niemueller, Till Hofmann, and Gerhard Lakemeyer. 2018. CLIPS-based
execution for PDDL planners. In ICAPS Workshop on Integrated Planning, Acting
and Execution (IntEx).

[13] Damien Pellier and Humbert Fiorino. 2021. Totally and Partially Ordered Hierar-
chical Planners in PDDL4J Library. In Proceedings of 10th International Planning
Competition: Planner and Domain Abstracts – Hierarchical Task Network (HTN)
Planning Track (IPC 2020). 17–18.

[14] Tomas Plch, Miroslav Chomut, Cyril Brom, and Roman Barták. 2012. Inspect, edit
and debug PDDL documents: Simply and efficiently with PDDL studio. System
Demonstrations and Exhibits at ICAPS (2012), 15–18.

[15] Jasmine Rimani, Charles Lesire, Stéphanie Lizy-Destrez, and Nicole Viola. 2021.
Application of MBSE to model Hierarchical AI Planning problems in HDDL. In
2021 Knowledge Engineering for Planning and Scheduling Workshop at ICAPS’21.

[16] Antje Rogalla, Alexander Fay, and Oliver Niggemann. 2018. Improved Domain
Modeling for Realistic Automated Planning and Scheduling in Discrete Manufac-
turing. In 2018 IEEE 23rd International Conference on Emerging Technologies and
Factory Automation (ETFA), Vol. 1. 464–471.

[17] Antje Rogalla and Oliver Niggemann. 2017. Automated process planning for
cyber-physical production systems. In 2017 22nd IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA). 1–8.

[18] Enrico Scala, Patrik Haslum, Sylvie Thiebaux, and Miquel Ramirez. 2016. Interval-
Based Relaxation for General Numeric Planning. In Proceedings of the Twenty-
Second European Conference on Artificial Intelligence (The Hague, The Nether-
lands) (ECAI’16). IOS Press, NLD, 655–663.

[19] FernandoMoreira Sette, Tiago Stegun Vaquero, SongWon Park, and Jose Reinaldo
Silva. 2008. Are Automated Planners up to Solve Real Problems? IFAC Proceedings
Volumes 41, 2 (2008), 15817–15824.

[20] Volker Strobel and Alexandra Kirsch. 2020. MyPDDL: Tools for Efficiently Creating
PDDL Domains and Problems. Springer International Publishing, Cham, 67–90.

[21] Tiago Stegun Vaquero, Flavio Tonidandel, and José Reinaldo Silva. 2005. The
itSIMPLE tool for modeling planning domains. Proceedings of the First Intl.
Competition on Knowledge Engineering for AI Planning, Monterey, Califormia, USA
(2005).

[22] Bernhard Wally, Jiří Vyskočil, Petr Novák, Christian Huemer, Radek Šindelář,
Petr Kadera, Alexandra Mazak, and Manuel Wimmer. 2019. Production Planning
with IEC 62264 and PDDL. In 2019 IEEE 17th International Conference on Industrial
Informatics (INDIN), Vol. 1. 492–499.

http://rakaposhi.eas.asu.edu/planning-list-mailarchive/msg00085.html
http://planning.domains/
https://github.com/jan-dolejsi/vscode-pddl

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Industry Context
	2.2 Introduction to PDDL
	2.3 Introduction to HDDL

	3 Case Study
	3.1 Basic IMM Cell Domain Specification
	3.2 Extended Domain Specification
	3.3 Lessons Learned

	4 Performance Comparison
	5 Discussion and Implications
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

