
An Experience Report on Challenges in Learning the Robot
Operating System

Paulo Canelas∗
Miguel Tavares
Ricardo Cordeiro
Alcides Fonseca

{pacsantos,alcides}@ciencias.ulisboa.pt
{mtavares,rcordeiro}@lasige.di.fc.ul.pt
LASIGE, Departamento de Informática,

Faculdade de Ciências da Universidade de Lisboa
Portugal

Christopher S. Timperley
ctimperley@cmu.edu

Institute for Software Research,
School of Computer Science,
Carnegie Mellon University

USA

ABSTRACT
TheRobotOperating System (ROS)was initially introduced to lower
the barriers to robots software development by reducing the need
for extensive domain knowledge. ROS allows developers to build
valuable robots by configuring and reusing off-the-shelf compo-
nents while writing little, if any, code through its modular design,
loosely coupled architecture, and rich package ecosystem. How-
ever, despite the advantages of this approach, the lack of documen-
tation can present a challenge to novice users.

In this work, we discuss the challenges and experience of learn-
ing and using ROS from the perspective of three novice users with
little to no prior experience in robotics. We report on the expe-
riences in learning ROS through a popular commercial training
course provided by The Construct Sim. Through our analysis, we
identify several common misunderstandings, mistakes, and bugs,
and we outline possible improvements to ROS to overcome these
challenges.

Our findings motivate further studies on the development of
robotic systems in ROS by novice users and promote the improve-
ment of the ROS ecosystem, on educational and training materials
of ROS, and on tooling development to help novices identify and
correct simple mistakes.

CCS CONCEPTS
• Software and its engineering → Software usability; • Com-
puter systems organization→ Robotics.

KEYWORDS
Robot Operating System, Python, Developer Experience, Usability

∗Also with the Institute for Software Research and School of Computer Science of
Carnegie Mellon University

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
RoSE’22, May 9, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9317-1/22/05…$15.00
https://doi.org/10.1145/3526071.3527521

ACM Reference Format:
Paulo Canelas,Miguel Tavares, RicardoCordeiro, Alcides Fonseca, andChristo-
pher S. Timperley. 2022. An Experience Report on Challenges in Learning
the Robot Operating System. In 4th International Workshop on Robotics Soft-
ware Engineering (RoSE’22), May 9, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3526071.3527521

1 INTRODUCTION
Programming a robot encompasses many challenges that range
from integrating various hardware components towriting and com-
posing the high-level programming logic.

The Robot Operating System (ROS) [6], colloquially known as
the “Linux of Robotics” [10], is one of themost popular frameworks
for this purpose that tackles these challenges through modularity
and reusability.

In ROS, developers can reuse existing components in their robots,
thus abstracting the implementation details of several components
of their robot, from odometry to route planning.

On the one hand, abstracting away the algorithmic and imple-
mentation details of common components (e.g., path planning, ob-
ject detection) eliminates the need for advanced domain expertise
and opens up robotics software development to a far wider audi-
ence. On the other hand, the mistakes of novice programmers may
result in costly and possibly dangerous outcomes due to the ro-
bot’s interaction with its physical environment [3]. Interventions
that aid developers in identifying and avoiding such mistakes are
therefore highly desirable (e.g., domain-specific feedback in pro-
gramming environments).

In this work, we aim to identify the challenges that novices face
when programming robots. By identifying the most frequent and
time-consuming challenges, we can guide the research and devel-
opment of approaches to improve the usability of ROS, such as
static analysis tools, better visualization, documentation, and train-
ing materials. We focus specifically on ROS as it is one of the most
popular frameworks and is designed to reduce complexity.

To identify the challenges, three investigators (the first three
authors), all of whom had no prior ROS experience, took a widely
available, introductory, paid course on ROS provided by The Con-
struct Sim.1 Throughout the course, the investigators catalogued
their experiences, focusing on the challenges that they faced and
1https://app.theconstructsim.com

https://orcid.org/0000-0002-0154-8989
https://orcid.org/0000-0002-6664-6977
https://orcid.org/0000-0002-8959-1702
https://orcid.org/0000-0002-0879-4015
https://orcid.org/0000-0002-9785-324X
https://doi.org/10.1145/3526071.3527521
https://doi.org/10.1145/3526071.3527521
https://app.theconstructsim.com

RoSE’22, May 9, 2022, Pittsburgh, PA, USA Canelas et al.

.txt

.txtThe Construct Sim

ROS 1 Basics Course

.txt

Stage 1

Mind Map

Investigator 1

Investigator 2

Investigator 3

Stage 3Stage 2

Challenge
5

?

!

Challenge
1

Challenge
3

Challenge
4

Challenge
2

Figure 1: Methodology of the challenges and problems annotation and categorization divided in three stages. Stage 1: the inves-
tigators are exposed to the ROS Basics in 5 Days (Python) course and each one annotates the challenges and problems encoun-
tered during the learning. Stage 2: the unorganized notes are categorized and the investigators discuss the shared challenges.
Stage 3: the creation of a mind map from the organized categories of challenges and problems identified by the investigators.

the extent towhich those challenges hindered their progress. After-
ward, the three investigators systematically discussed, compared,
and categorized the challenges that they experienced. In this pa-
per, we report those shared experiences. While this work is based
on the experience of only three people, we provide valuable in-
sights and a thorough description of each problem to the extent
that may not be possible with a larger cohort (e.g., via question-
naires or interviews as in recent studies of challenges in robotics
software engineering. [1, 2]).

2 METHODOLOGY
Figure 1 illustrates our study methodology: First, each of the three
investigators took the ROS Basics in 5 Days (Python) course atThe
Construct Sim. During the course, each investigator maintained
notes on any difficulties encountered. Upon completing the course,
the investigators met to discuss and compare their experiences be-
fore consolidating their challenges into a mind map consisting of
seven top-level categories, each of which consisted of one or more
sub-categories describing specific issues.

In the rest of this section, we present the threats to validity
of this work (Section 2.1), we describe the background of each of
the investigators (Section 2.2), and the course that was taken (Sec-
tion 2.3).

2.1 Threats to Validity
We identify the following threats to validity in this work:

• This work is based on the investigation of only three users.
We accept this limitation and encourage others to replicate
this experience. However, we provide a detailed report that
might not be possible if the target included many users. It
is also important to note the difficulty in recruiting partici-
pants, as this task requires weeks of effort and participants
need to be interested in learning ROS, but have not learned
anything about it yet. This experience can also help guiding
the design of questionnaires for a larger audience.

• Our conclusions are biased by the course followed by the in-
vestigators, and certain challenges might be associated with
the course and not necessarily in ROS. Tomitigate this issue,
we selected the best resource available for learning ROS. If

there is no better alternative, maybe the limitations of this
particular course reflect the lack of better materials for this
purpose.

• Our conclusions might be too specific for ROS1, while ROS2
is expected to be the standard in the near future. ROS2 im-
proves the architecture design over ROS1, but the new,more
modular approach also increases the indirection between
the high-level code and the behaviors of modules. Thus, we
find that most of the problems reported can also apply to
ROS2.

2.2 Investigators
This study reports the experiences of three investigators, corre-
sponding to the three first authors of the paper: Investigator 1
(Tavares) and Investigator 2 (Cordeiro) were final-year M.Sc. stu-
dents in Computer Science at University of Lisbon, and Investiga-
tor 3 (Canelas) was a second-year Ph.D. student in Software Engi-
neering at the same institution and at Carnegie Mellon University.
All three investigators shared a similar curricular background and
had prior experience with Java, C, and Python. Only one investi-
gator (Tavares) had prior experience of programming robots using
Thymio [7], while the other investigators had no such experience.

2.3 The Construct Sim
The Construct Sim is an online learning platform for ROS and ro-
botics that provides over 40 courses covering everything from the
basic concepts of ROS to programming autonomous vehicles.

This paper reports on the developer experience of the investi-
gators in an introductory course on ROS. The investigators took
the Python version of ROS Basics in 5 Days instead of the C++ ver-
sion, as they were familiar in the language and learning another
programming language would introduce another variable in the
study.

The ROS Basics in 5 Days (Python) is split into four parts: an in-
troduction to ROS; a section on the publisher and subscribermodel;
another on the services client and services server; and a final sec-
tion on action clients and servers. Each part provides code exam-
ples that follow ROS best practices [4]. The course allows its users
to interact with four different simulations of robotic systems: a BB8

An Experience Report on Challenges in Learning the Robot Operating System RoSE’22, May 9, 2022, Pittsburgh, PA, USA

Table 1: Tasks exercised by the investigators during the learning in the ROS Basics in 5 Days (Python) course.

Module Name Task ID Task Description Simulation
Publisher T1 Publish data to the cmd_vel topic to induce movement in the robot.

Subscriber
T2
T3
T4

Create a subscriber that prints the robot odometry.
Create a Publisher that publishes the robots age.
Create a new message type called Age.msg.

Publisher-Subscriber T5
Quiz: Create a publisher that moves the robot.
Create a subscriber that reads information from the scanner.
The robot should avoid a wall as it gets closer.

Turtlebot

Services Clients
T6
T7
T8

Create a launch file which launchs a service.
Get information on the service messages a service uses.
Create a client that requests the arm to follow a trajectory.

Wam Arm

Services Servers & Messages

T9
T10
T11
T12

Create a service which moves the robot in a circle.
Create a client to call the new service and induce movement in the robot.
Create a custom service message with the duration the robot should move.
Adapt the service server to receive and process the new type of message.

Services T13
Quiz: Create a service that moves the robot in a square. The side of the square
and number of repetitions is given by a new type of message. Create a service
client and a launch file.

BB8 Robot

Actions Clients

T14
T15
T16
T17
T18
T19

Use the command line to takeoff, move and land the drone.
Experiment the commands to obtain information about an action.
Observe the differences between the synchronous and asynchronous clients.
Create a package which launches an action client.
Have the drone move and take pictures during flight.
Practice in the command line the different interactions with the actions.

Actions Servers T20 Create an action server that moves the drone in a square.

Actions T21 Quiz: Create an action server whichs receives TAKEOFF or LAND as a goal.
As feedback, it publishes the current action taking place.

Drone

Real Robot Lab T22

Create a system that makes the robot move in a square. The robot should stop
if an object is detected infront. During its execution, the robot publishes the
total amount of meters travelled. As result it should record one measurement
per second of the robots position.

Turtlebot

robot, a Wam robot-arm, a TurtleBot 3, and a drone. The investiga-
tors completed the course using an online web version of VSCode
featuring an integrated simulator, Gazebo [5].

The beginning of the course provided a brief introduction to the
Robot Operating System and information on building custom ROS
projects. Throughout the course, the investigators were required
to accomplish different tasks (described in Table 1), to apply the
primary concepts taught in each module.

Each module contains a final quiz that evaluates the investiga-
tors learning on that specific topic. After completing the quiz for
each module, the investigators were required to do a final course
that combines the three ROS architectural models. The final exam
allowed the execution of the robotic system both in simulation and
with a real robot.

3 RESULTS
Figure 2 provides a breakdown of the challenges of using ROS that
the investigators identified. Below, we discuss each challenge in
more detail and use shaded circles to indicate the number of inves-
tigators that faced each particular challenge. We also identify in
which tasks each challenged occurred, using the identifiers from
Table 1.

3.1 Build System

3.1.1 IDL File Consistency (xxh).
The first challenge faced by the investigators was the complexity
in defining new message formats. Because this process requires
changing code in multiple places in different files [T11, T13], it
was always necessary to follow the tutorial, even after repeating
this process multiple times. Furthermore, the investigators also
made the common mistake of forgetting some dependencies when
creating a package. Although these are issues that occur in other
programming domains, IDE and build systems often diagnose and
automate the process of propagating these changes.This issuemight
also be caused by an highly coupled design regarding message
types.

A second challenge when operating with the IDL is keeping
the dependencies between the launch files and the Python imple-
mentation files consistent [T5]. When creating a new ROS node,
developers provide a unique identifier that can be used to start
that node from a launch file. However, the system does not have
a sanity check between those two identifiers. In the case of a mis-
match (common with typographical error), the robot simulation

RoSE’22, May 9, 2022, Pittsburgh, PA, USA Canelas et al.

ROS Challenges and

Problems

Build System ROS Architecture

ROS Conventions Domain Knowledge on
Robotic Systems

Concurrency

Simulation and Real
Robot Differences

Common

Programming Errors

IDL File Consistency Publisher-Subscriber
Frequency Impact

Standard methods Message Content

Impact in ROS

Shared Memory

in Callbacks

ROS IDL

Discoverability

Topic Identifiers

Service Messages
Files

Message Loss

Figure 2: Mind map of the challenges and problems identified by the investigators.

does not have the proper behavior and identifying this mismatch
as the source of the program is not straightforward.

3.2 ROS Interface Description Language
The ROS Interface Description Language (IDL) is used to describe
the format of messages, services, and actions. ROS transforms IDL
descriptions into concrete implementations of those formats for
different target languages (e.g., C++ and Python).

3.2.1 ROS IDL Discoverability (xxx).
ROS provides components for different common tasks in robots.
However, identifying which component is responsible for provid-
ing certain information or functionality was challenging.

For instance, the investigators used TurtleBot 3 and a drone over
two simulations. When asked to obtain information about the posi-
tion of the robot, they struggled to identify the topic in which this
informationwas published for the drone [T20].While the standard
topic for obtaining a robots position and orientation is the odom
topic, the drone uses gt_pose. Although for experienced users, it
may be evident why odometry is only applied for wheeled mobile
robots, this is not true for novice users with no background experi-
ence in robotics. The investigators were required to blindly search
each topic until they found the right one. Furthermore, it is not ex-
plicit how each message and its parameters impact the execution
of the robotic system due to a lack of documentation.

3.3 ROS Conventions

3.3.1 Standard methods (xxh).
Due to their lack of experience, the investigators did not follow
expected good practices in ROS. One example is forgetting to im-
plement callbacks and hook methods (e.g., on_shutdown for a safe
exit) [T1, T5, T21], typically required for the good functioning of
the robotic system. While this has been introduced in the course,

this was frequently missed in the process of implementing new
features, with no clear message identifying this issue.

3.4 ROS Architecture

3.4.1 Publisher-Subscriber Frequency Impact (xxx).
Different ROS components require different event frequencies. For
example, a component may need to perform an action each mil-
lisecond, but the component that provides the required informa-
tion only emits updated information each second. ROS developers
can use both components in a project, without understanding that
there is a mismatch in the assumed and provided information fre-
quencies.

To better illustrate, consider Listing 1, which presents a simple
example of a node that publishes continuously publishes messages
to the cmd_vel topic to move the robot in the x axis. The overall
code can be split into three parts: 1) the creation of the node and
publisher; 2) the creation of the message being published; and 3)
the constant publish of the message to move the robot. Although
this presents a very naive example of a publisher, during the course
we identified three associated challenges.

The first challenge arises in the definition of the publisher. One
is required to define the queue_size to the publisher. Both ROS
publishers and subscribers place theirmessages on a bounded queue
to await processing. The investigators found it difficult to deter-
mine queue sizes and predict their impact, and instead relied on
choosing arbitrary values and testing them on the robot [T1, 22].
The definition of a good queue size is typically associated with the
frequency at which the message is being published.

Defining the right frequency corresponds to the second chal-
lenge the investigators found during their learning [T1]. If the
queue size is not set properly and one provides a high publishing
rate, messages can be lost. On the other hand, if the publishing rate

An Experience Report on Challenges in Learning the Robot Operating System RoSE’22, May 9, 2022, Pittsburgh, PA, USA

1 # Instantiate the node
2 rospy.init_node('robot_move ')
3
4 # Create the publisher
5 pub = rospy.Publisher('/cmd_vel ', Twist , queue_size =1)
6
7 # Create the message
8 message = Twist ()
9 message.linear = Vector3 (0.5, 0, 0)
10
11 # Define the rate
12 rate = rospy.Rate (10)
13
14 # Publish the speed at fixed rate of 10 Hz
15 while not rospy.is_shutdown ():
16 pub.publish(message)
17 rate.sleep()

Listing 1: Code example of a publisher implemented in ROS.

is too small, the robot will struggle to move correctly. The queue
size, the publishing rate, and the robot velocity being published are
highly dependent on each other and impact the simulation, which
to new users may be unexpected. For instance, a user may want
the robot to stop immediately after a certain number of messages
have been sent. However, the robot stop may not be immediate as
it can still have messages in its queue, or the robot itself may have
momentum.

Investigators also found another issue related to the control of
the subscription rate. If one publishes information at 20Hz, and a
subscriber intends to receive information at 10Hz, what should be
the ideal method to throttle the subscriber that improves the robot
performance.

3.5 Domain Knowledge on Robotic Systems

3.5.1 Message Content Impact in ROS (xxx).
While the previous challenge was related to the frequency of mes-
sages in the different ROS nodes, there is the additional issue of
how to estimate and understand the impact of the message con-
tent with the real-world behavior. For instance, in the previous
example, how the velocity value published affects the real speed
of the robot is non-linear. A similar scenario occurred when try-
ing to smoothly land a drone. However, taking into account the
frequency of messages and their content is not enough to move
the robotic system closer to the ground at a progressively lower
speed. To have a better understanding, it is necessary to under-
stand differential drive and specific implementation details, such
as publishing frequency and likelihood of dropping messages. The
abstractionmodel of ROS hides most of these details, hindering the
connection between high-level code and its impact in the simula-
tion or world.

3.6 Common Programming Errors
Every framework has common programming errors typically as-
sociated with its technical details. In this section, we identify two
errors experienced by the investigators related to stringly-typed
topic names (Section 3.6.1) and with the messages and services file
names (Section 3.6.2).

1 sensor = list()
2
3 # Callback for scan topic
4 def scan_cb(scan_msg):
5 sensor = scan_msg.ranges
6
7 # Callback for odometry topic
8 def odom_cb(msg):
9 position:Pose = msg.pose.pose.position
10 if sensor [90] < 1.0:
11 print(f"Robot close to wall: {sensor [90]}")
12 print(f"Robot Position: {position}")
13
14 # Subscribers definition
15 odom_sub = rospy.Subscriber('/odom', Odometry , odom_cb)
16 scan_sub = rospy.Subscriber('/scan', LaserScan , scan_cb)
17 rospy.spin()

Listing 2: An example concurrency issue.

3.6.1 Topic Identifiers (xxh).
ROS allows the programmer to subscribe and publish information
to topics by providing the topic name as a string and the type
of message it receives. The most common mistake during devel-
opment was the mistyping of topic names (e.g., \odom instead of
/odom) [T2, T5, T13]. Since no verification of identifiers is done
in ROS, the system compiles and runs, but does not behave as in-
tended.

3.6.2 Service Message Files (xhh).
Messages and services can have the same name. However, if both
are used in the same node, the system emits errors that are not
easy to trace back to the different entities having the same name.

Another problem is that having entities with the same name
causes confusion for the developer, and thewrong onemay be used
in the wrong place [T11].

3.7 Concurrency

3.7.1 Shared Memory in Callbacks (xhh).
In the case where a node subscribes to two different topics and
wants to publish to a third topic, the investigators found concur-
rency related issues that were addressed properly by neither the
ROS API nor The Construct Sim.

In particular, consider the case where two callbacks are needed
to handle the subscribedmessages.There is a concurrency problem
when these two callbacks read and write from the same shared
memory.

Listing 2 defines two subscribers: Upon receiving a message, the
callback for the scan_sub subscriber sets a shared variable with
information from sensors. The sensors publish information to the
scan topic, which provides information on the distance the robot
is from an object.The callback for the second subscriber, odom_sub,
receives the current position of the robot and checks whether there
is an obstacle ahead; if so, the robot’s position is printed.

The primary challenge is dealing with the concurrency on the
sensor variable accessed in the odom_cb and odom_cb. This prob-
lem appeared when working in task T22. Consider that each call-
back is triggered at the rate at which messages are published to
their respective topics. If scan_sub is called more frequently than
odom_sub, the sensor information accessed at line 15 may already

RoSE’22, May 9, 2022, Pittsburgh, PA, USA Canelas et al.

be outdated. This race condition can lead to an unintended of the
robotic system. A solution implemented by the investigators was
the addition of a mutex to the sensor variable.

Despite the usefulness in ensuring the correctness of the infor-
mation, the introduction of the mutex may change the frequency
that the callback operates. However, changing the frequency at
which the callback processes messages can have unpredicted side
effects when running the robotic system.

3.7.2 Message Loss (xxh).
A common problem faced by the investigators was the loss of mes-
sages, which led to the robotic systems to idle [T13]. When a node
that uses actions or services is launched and the corresponding
action or service server is not ready yet, the published messages
will be silently lost. This problem is only evidenced by the wrong
behavior of the robot.

A similar problem occurs when a publisher publishes a topic
only once but before the subscriber is listening. Nevertheless, al-
though not initially apparent to the investigators, ROS allows the
persistence of the last published message to a topic by “latching”
the connection. If the user does not latch the connection, the order
in which the subscriber and publisher are initiated matters. In both
cases, the system requires the programmer to implement a waiting
system to ensure that both ends are available for communication.

4 FUTURE DIRECTIONS
This report presented the experience of three investigators when
introduced to the Robot Operating System. Firstly, the investiga-
tors followed the ROS Basics (Python) Course fromThe Construct
Sim’s training course. Then, they annotated the challenges and
problems identified at each task during their learning. Finally, each
challenge and the associated task was categorized and described at
the end of the course.

We presented nine challenges and problems identified by the
investigators and depicted in a mind map. The challenges were re-
lated to the build system, the ROS interface and its architecture,
common programming errors, and concurrency issues. Based on
the challenges that we identified, we describe several opportunities
to improve the ROS developer experience for newcomers below.

Firstly, we address Standard Methods (Challenge 3.3.1). We hope
that the presented results help design more in-depth usability stud-
ies with larger study groups. For instance, one could evaluate the
difficulty of applying good practices in ROS and its impact on the
robot’s behavior. This challenge also motivates the introduction
and improvement of verification tools, such as HAROS [8] and
ROSDiscover [9], to ensure good coding practices and program cor-
rectness.

Secondly, we address the points presented in ROS IDL Discover-
ability (Challenge 3.2.1), Message Loss (Challenge 3.7.2) and Mes-
sage Content Impact in ROS (Challenge 3.5.1), where we encourage
the need for better documentation for each component. At a mini-
mum, this should describe the component’s interface, its intended
communicationmodel, and the frequency and bounds onmessages
values. In addition, better documentation for off-the-shelf compo-
nents makes it easier to understand the roles of each component
and how the user may adapt them to achieve the desired behavior.

Thirdly, we address the points in Topic Identifiers (Challenge
3.6.1) and Service Message Files (Challenge 3.6.2). This study mo-
tivates the introduction of novel frameworks and techniques that
statically check the correctness of ROS systems and address the
stated challenges. For instance, verifying ROS-specific properties,
such as the stringly-typed topic names in the publications and sub-
scriptions, could help prevent this category of errors. In particular,
Dependent Types, where the expected type of messages is depen-
dent on the topic name, can be useful to prevent such errors.

Finally, we address the points in IDL File Consistency (Challenge
3.1.1) and Publisher-Subscriber Frequency Impact (Challenge 3.4.1).
We hope to motivate the analysis of the architecture of the robot
and systems configuration files to provide novice and expert users
with the information needed to correct an existing problem in their
system. For instance, ROSDiscover already allows a certain level
of analysis from the recovered systems architecture. We propose
the introduction of techniques that allow the specification of the
systems architecture by the user and the formal static verification
of this architecture as a way to improve the system’s correctness.

5 ACKNOWLEDGEMENTS
This work was supported by Fundação para a Ciência e Tecnologia
(FCT) in the LASIGEResearchUnit under the ref. (UIDB/00408/2020
and UIDP/00408/2020), and the CMU–Portugal Dual Degree PhD
Program (SFRH/BD/151469/2021), by the CMU–Portugal project
CAMELOT, (POCI-01-0247-FEDER-045915), the RAP project under
the reference (EXPL/CCI-COM/1306/2021), and the U.S. Air Force
Research Laboratory (#OSR-4066).

The authors are grateful for their support. Any opinions, find-
ings, or recommendations expressed are those of the authors and
do not necessarily reflect those of the US Government.

REFERENCES
[1] Afsoon Afzal, Deborah S. Katz, Claire Le Goues, and Christopher Steven Tim-

perley. 2021. Simulation for Robotics Test Automation: Developer Perspectives.
In International Conference on Software Testing (ICST ’21). 263–274.

[2] Afsoon Afzal, Claire Le Goues, Michael Hilton, and Christopher Steven Timper-
ley. 2020. A Study on Challenges of Testing Robotic Systems. In International
Conference on Software Testing (ICST ’20). 96–107.

[3] Gopika Ajaykumar, Maureen Steele, and Chien-Ming Huang. 2022. A Survey on
End-User Robot Programming. ACM Comput. Surv. 54, 8 (2022), 164:1–164:36.
https://doi.org/10.1145/3466819

[4] Robotic Systems Lab Legged Robotics at ETH Zürich. 2021. ROS Best Practices.
https://github.com/leggedrobotics/ros_best_practices/wiki.

[5] Nathan P. Koenig and Andrew Howard. 2004. Design and use paradigms for
Gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2149–2154. https://doi.org/
10.1109/IROS.2004.1389727

[6] MorganQuigley, Ken Conle, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Ng. 2009. ROS: an open-source Robot Operating
System. ICRA Workshop on Open Source Software 3, 3.2 (01 2009), 1–6.

[7] Fanny Riedo. 2015. Thymio a holistic approach to designing accessible educa-
tional robots. (2015). https://doi.org/10.5075/epfl-thesis-6557

[8] André Santos, Alcino Cunha, and Nuno Macedo. 2021. The High-Assurance
ROS Framework. In 3rd IEEE/ACM International Workshop on Robotics Software
Engineering, RoSE@ICSE 2021. IEEE, 37–40. https://doi.org/10.1109/RoSE52553.
2021.00013

[9] Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan,
and Claire Le Goues. 2022. ROSDiscover: Statically Detecting Run-Time Archi-
tecture Misconfigurations in Robotics Systems. In International Conference on
Software Architecture (ICSA ’22). (To appear.).

[10] Keenan Wyrobek. 2017. The Origin Story of ROS, the Linux of Robotics. IEEE
Spectrum (Oct 2017). https://spectrum.ieee.org/the-origin-story-of-ros-the-
linux-of-robotics

https://doi.org/10.1145/3466819
https://github.com/leggedrobotics/ros_best_practices/wiki
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.5075/epfl-thesis-6557
https://doi.org/10.1109/RoSE52553.2021.00013
https://doi.org/10.1109/RoSE52553.2021.00013
https://spectrum.ieee.org/the-origin-story-of-ros-the-linux-of-robotics
https://spectrum.ieee.org/the-origin-story-of-ros-the-linux-of-robotics

	Abstract
	1 Introduction
	2 Methodology
	2.1 Threats to Validity
	2.2 Investigators
	2.3 The Construct Sim

	3 Results
	3.1 Build System
	3.2 ROS Interface Description Language
	3.3 ROS Conventions
	3.4 ROS Architecture
	3.5 Domain Knowledge on Robotic Systems
	3.6 Common Programming Errors
	3.7 Concurrency

	4 Future Directions
	5 Acknowledgements
	References

