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ABSTRACT
Robotic systems are becoming common in different domains and
for various purposes, such as unmanned aerial vehicles performing
search and rescue operations, or robots operating in manufacturing
plants. Such systems are characterized by close interactions, or even
collaborations, between hardware and machinery on the one hand,
and humans on the other. Furthermore, as Cyber-Physical Systems
(CPS) in general and robotic applications in particular typically
operate in an emergent environment, unanticipated events may
occur during their operation, making the need for runtime moni-
toring support a crucial yet often time-consuming task. Runtime
monitoring typically requires establishing support for collecting
data, aggregating and transporting the data to a monitoring frame-
work for persistence and further processing, and finally, performing
checks of functional and non-functional properties. In this paper, we
present our initial efforts towards a flexible monitoring framework
for ROS-based systems. We report on challenges for establishing
runtime monitoring support and present our preliminary architec-
ture that aims to significantly reduce the setup and maintenance
effort when creating monitors and establishing constraint checks.
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1 INTRODUCTION
Robotic systems are currently used across different domains, for var-
ious purposes and diverse tasks. Examples include unmanned aerial
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vehicles, e.g., performing search and rescue operations [1], and
industrial applications of Cyber-Physical Production Systems [10].
What most Cyber-Physical Systems (CPS) have in common is a close
interaction, or even collaboration between hardware and machin-
ery on the one hand, and humans on the other. Furthermore, as CPS
typically operate in an emergent environment, unanticipated events
may occur during operation. This, in turn, requires to monitoring
the behavior of the robot at runtime, collecting runtime information
and checking safety properties. Regarding safety, various solutions
have been proposed and approaches have been developed to assure
the safe behavior of such systems and to perform mitigating actions
if critical safety constraints are violated [2, 9, 16].

However, regardless of the application domain, type of system,
or monitoring objective, most approaches so far have been devel-
oped with a specific purpose in mind, typically supporting only a
narrow set of features or type of system. In a systematic literature
review [18], we analyzed over 350 runtime monitoring approaches
used for different types of systems, constraints, and technologies,
and found that these approaches all require a significant up-front
investment in order to set up a monitoring framework, define con-
straints, and perform checks on the collected runtime data.

Many modern robot applications rely on the Robot Operating
System (ROS) which provides a platform for a wide variety of
different applications and systems. Applications built on top of
ROS also require capabilities not only for collecting data, but for
performing subsequent analysis, and checking functional behavior,
quality or safety constraints. In order to avoid reinventing the
wheel, i.e. implementing a new monitoring framework every time
a new ROS-based application is built, in this paper we describe
our initial concepts and efforts towards a flexible, yet easy to use
runtime monitoring framework for ROS-based systems. Model-
driven Engineering (MDE), combined with models@runtime [3]
has proven valuable for modeling design-time aspects of the system,
managing and maintaining runtime data, and also for addressing
evolution and maintenance. Therefore, based on previous initial
work on MD-monitoring [17], in this paper, we identify challenges
for providing effective monitoring support for ROS-based systems
and subsequently discuss requirements of a monitoring framework.

The remainder of this paper is organized as follows: Section 2
discusses monitoring challenges and Section 3 introduces the con-
cept of a flexible runtime monitoring framework for ROS-based
systems. Finally, we discuss our planned research in Section 4 and
conclude the paper in Section 5.
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2 MONITORING CHALLENGES
CPS are used in a variety of application areas, including industry
applications such as factory automation or transportation. A shared
understanding of the perhaps (partially) unknown structure of the
system, and the data provided by the different parts of the system,
is crucial to enable meaningful runtime monitoring and to allocate
the collected data and the resulting violations and warnings to the
respective part of the system.

Thus, one major challenge resides in the provisioning of an
initial overview of the system structure (C1). The user makes
decisions about the monitoring characteristics, and ultimately the
monitoring configuration (what needs to be monitored, when, and
how frequently). As CPS consist of diverse components such as
robotic arms, automated storage, and autonomous robots in an
industrial manufacturing environment, one needs to know what
kind of data is available and which parts are in fact relevant for sub-
sequent runtime checks [7]. Depending on the robot’s sensors, this
could, for example, include data about the battery status, velocity,
or data from a LiDAR unit (e.g., distance to the nearest obstacle).

Furthermore, different systems provide different (types) of data,
depending on the version of the system, and individual machines
may be equipped with unique sensors and actuators depending on
the tasks they are performing. A one-size-fits-all monitoring solu-
tion might be capable of collecting general properties but does not
align well with the individual needs for certain parts of the CPS. A
second monitoring challenge, therefore, stems from this diversity
and need to individually configure monitoring needs (C2)
for different parts of a CPS. Without a proper and easily adaptable
monitoring framework, important data might be missed, or a sig-
nificant amount of effort is required to customize and update the
monitoring framework once the System under Monitoring (SuM)
changes.

While some systems provide documentation of its components
(e.g., using UML) and hence its monitorable properties, only a
subset of these properties likely need to be monitored on a
continuous basis (C3). Furthermore, depending on the task, or
environmental factors, data might need to be collected and ana-
lyzed more frequently to ensure safe behavior, or less frequently
to preserve battery power. Therefore, adaptive monitoring [4, 5]
plays an important role, meaning that the monitoring infrastruc-
ture itself needs to adapt depending on environmental conditions
and/or the state of the system. For instance, if a robot is in an envi-
ronment where it travels along a predefined path with fixed stops,
data needs to be collected and analyzed differently (C4) (i.e.,
less frequently) compared to when it is operating in a dynamic
environment where the robot can move freely. In the dynamic envi-
ronment, the robot may encounter another robot during navigation,
requiring data (like distance to nearest obstacle) to be updated more
frequently to avoid collisions. In addition to environmental condi-
tions, the internal state of the robot might also affect monitoring.
For example, when a robot’s battery is running low, certain non-
critical properties might be collected less frequently in order to
preserve battery and prolong the current operation [8]. This has a
trickle-down impact by reducing subsequent processing and analy-
sis of the data. While in some cases local monitoring on the robot

itself is sufficient, in other cases central monitoring is more appro-
priate. For example, if multiple robots within a delineated area are
initially activated and do not move, the current location does not
need to be transmitted to a central unit. However, if several robots
perform different tasks and move simultaneously within the area,
the location of the robots is important and should be transmitted
to a central unit.

Typically in a monitoring framework, data is not only collected
but then subsequently processed and analyzed. Depending on the
type of data, and the application scenario, diverse types of con-
straints need to be defined and checked on the data (C5). For
example, safety zones must be maintained to ensure safety while
humans andmachines are working simultaneously. Besides runtime
evaluation of constraints, another use case is post-mortem analysis
of data stored over time, making it necessary to also persist the
collected data for later use [6, 13].

Finally, it is important tomake the outcome of the runtime
monitoring data and services accessible to the user (C6). This
includes providing adequate information about the output of the
services including violations of constraints, collected runtime data,
and the persisted data. This way, the user can make sure that ev-
erything is working properly according to the current state of the
robot and its operating environment. Simultaneously, this initiates
a re-evaluation process of the defined user configuration. For exam-
ple, if a constraint is continuously violated during monitoring, the
user is guided to initiate appropriate responses, including verifying
that the physical SuM is functioning properly or that a redefinition
of constraints is required.

3 A FLEXIBLE RUNTIME MONITORING
FRAMEWORK FOR ROS-BASED CPS

To address the previously mentioned challenges, we present our
initial version of a flexible framework for runtime monitoring sup-
port of ROS-based applications, as shown in Fig. 1. Our framework
consists of six main components: a System Modeler for creating a
monitoring configuration (definition and selection of monitoring
properties of the SuM); a Monitor Adaptation Manager for defin-
ing and executing adaptation of the monitors; the Runtime Model
for collecting and distributing monitoring information; Constraint
Engine(s) for performing runtime checks; a Data Persistence compo-
nent for storing collectedmonitoring data; and a Runtime Dashboard
providing evaluation results and insights to the user.
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Figure 1: High-Level overview of our monitoring approach
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3.1 Overview
• SystemModeler: Establishing a monitoring infrastructure can

be accomplished in a top-down fashion, where all systems, elements,
and properties are defined beforehand, and then the respective data
from various components of the system is collected. Alternatively, a
bottom-up approach can be used in which the actual data serves as
a starting point, and the definition of the monitored components is
built around it. As ROS provides a topic-based subscription service,
information about the data, and rudimentary information about
the components – encoded in the topic structure – can be retrieved
at runtime and leveraged to incrementally build a model of the
SuM. As part of our approach, we propose a combination of both
the top-down and bottom-up approach, where the System Modeler
component connects to the running system and provides the user
with information about currently active topics and data that is sent.
The user can then visually access and explore the properties of
the SuM in a user interface (C1). Based on this information, the
user can select/update important properties that are of interest for
monitoring and link them to the respective ROS topics. Additional
properties can be added, shaping the hierarchical structure and
dependencies of the system. In turn, this structure is then used for
activating or deactivating properties in the running system, and
stored as a monitoring configuration (C2). Additionally, in order
to be able to react to different states or environmental conditions,
state transition diagrams are used to define different states that
require different properties to be monitored (C3). The states are
then associated with the properties defined in the monitoring con-
figuration and used to define which property needs to be monitored
in which state. Furthermore, for each state, the frequency of which
data is collected can be specified on a per-property basis (C4).

• Monitor Adaptation Manager: Once the structure of the
system and monitoring states are defined, the Monitor Adaptation
Manager is responsible for “executing” the respective configura-
tion, generating monitors that collect data, and forwarding it to
the Runtime Model. In case the SuM changes as a result of its own
adaptation (e.g., a sensor is removed) – or when the user decides to
manually adjust the configuration, the Monitor Adaptation Man-
ager recognizes these changes and updates the generated monitors
accordingly, e.g., by deactivating certain monitors, adding new ones,
or changing the period of which data is forwarded to the monitor-
ing infrastructure. Furthermore, using the state transition diagrams,
the Monitor Adaptation Manager can react to changes in the state
of the SuM and adjust monitoring parameters when needed.

• Runtime Model: The Runtime Model is instantiated using
the previously defined SuM Model. This part is responsible for col-
lecting and distributing runtime information. The Runtime Model
is needed to effectively connect and map additional services using
the runtime data, for example, a constraint engine or a database.
Our preliminary work on generic model-based monitoring [17]
provides additional details about the runtime model instantiation.

• Constraint Engine: Depending on the type of constraint that
needs to be checked, different Constraint Engines (e.g., Drools1
for process-oriented rules, or Complex Event Processing (CEP)
for temporal constraints) might be employed. The user can then
define domain-specific constraints based on the individual use case

1https://www.drools.org

and environment in which the SuM operates. This can include,
for example, performance constraints, safety-related checks (e.g.,
ensuring a minimum battery level), or checking that events are
executed in the prescribed order. The Constraint Engine then checks
if any predefined constraints are violated, for example, by extracting
data about the current velocity provided via the Runtime Model
and checking if the values exceed a certain speed limit (C5).

•Runtime Dashboard: The Runtime Dashboard is used to visu-
alize collected data and provide the user with additional information
about the status of the system (C6). This includes information about
the currently active parts of the SuM (i.e., where data is currently
collected from, and how often), as well as information about con-
straints and respective violations that have occurred. Based on this
information, the user can then decide to intervene, or further con-
figure the monitor – for example, to collect additional data after a
violation has been reported.

• Data Persistence: Finally, besides evaluating constraints at
runtime, our approach supports the collection and storage of data
for post-mortem analysis purposes. This enables offline, potentially
complex, analysis on event traces and also supports simulations,
and replaying of events that resulted in constraint violations [15].

3.2 Prototype Implementation
For assessing the feasibility of the proposed approach, we have
implemented key aspects, with a main focus on the Monitor Adap-
tationManager, and applied it to a scenario where ROS-based Turtle-
Bot robots are monitored while performing different tasks. Both the
System Modeler and Monitor Adaptation Manager are currently
implemented in Python. The “rosbridge suite” package is used for
connecting to the ROS system and collecting information about
the running system (e.g., the battery status, velocity, or diagnostics
data of the TurtleBots). This information is used to select and con-
figure the respective properties and map them to the ROS topics
that should be monitored. For each selected property, the Monitor
Adaptation Manager then generates a respective topic subscription
using the rosbridge package. The subscriptions are dynamic and
can be activated and deactivated at runtime whereby the frequency
determines how often data is forwarded from the Adaptation Man-
ager to the Runtime Model. We generate the Runtime Model using
an Eclipse EMF model that represents the SuM. Data transport from
the Monitor Adaptation Manager to the infrastructure and from
the infrastructure to the different services is realized via MQTT,
which is designed for machine-to-machine communication in IoT
environments. As both, MQTT and ROS, use a publish/subscribe
pattern for communication, ROS topics can be easily mapped to
each of the monitored properties. Our prototype has demonstrated
that dynamically collecting runtime data, changing collection fre-
quencies on-demand, and providing user feedback can largely be
automated and implemented in a generic way independent from
the actual SuM. Additionally, for runtime constraint evaluation, we
have used Complex Event Processing for defining complex con-
straints, such as distance checks between bots, and the Viatra Model
Query engine for defining state-based checks, such as minimum bat-
tery levels. Finally, a web-based dashboard provides visualizations
and information to the user showing runtime data and constraint
violations.
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4 RELATED APPROACHES AND ROADMAP
Runtimemonitoring has been an active research area with many dif-
ferent monitoring solutions that support different monitoring needs
and types of systems [12]. Several approaches so far have tackled
the issue of adaptive monitoring [4] and dynamic checks using
runtime models [14]. Some approaches already exist that specif-
ically target ROS-based systems for monitoring certain types of
properties [11, 19]. However, unlike existing approaches, our aim is
to significantly reduce the human effort of initially establishing run-
time monitoring support and then maintaining the infrastructure
when the SuM changes. Providing modeling and monitor adapta-
tion support, our initial prototype implementation indicates that
the approach can be easily applied to different ROS-based systems
and that we can successfully model, monitor, and adapt the system
without the need to continuously update and re-implement probes
or monitoring components.

Once fully implemented, we are committed to provide our work
as an open-source project which will be publicly made available
on GitHub. Based on our progress so far, we plan to focus on the
following research aspects in our ongoing work:

•Efficient Data Processing. Besides activating and deactivating
monitors, and changing the frequency of data collection, additional
configuration options require more sophisticated data processing
(wrt. C4). For example, instead of forwarding data more frequently,
data might be aggregated, or certain calculations can directly be
performed on the edge device, before being sent to the cloud and
the Runtime Model. Depending on the state of the system, and
available computation capacities, aggregation strategies might also
dynamically adapt at runtime.

• Resolving ConflictingMonitoring Configurations.When a human
is involved in an adaptive system or intervenes in an automated
decision-making process, this inevitably results in conflicts. For
example, a user decides to manually decrease the monitoring pe-
riod for a certain property, e.g., the current position of a robot, but
this conflicts with minimum safety requirements for checking con-
straints. We are therefore planning on providing meaningful and
valid configuration options to the user, and providing explanations
and justification, whenever specific options are not available or
would jeopardize the correct behavior of the SuM.

• Diverse Constraint Checks. While our prototype implemen-
tation has demonstrated that different constraint engines can be
easily integrated (cf. C5), writing and maintaining different types
of constraints can quickly become a complex and cumbersome task.
A simplified domain-specific language for runtime constraints that
is then used to generate CEP rules, OCL constraints, or other more
formal rules could help to reduce complexity and learning effort
for the user writing and maintaining these constraints.

5 CONCLUSION
In this paper, we have reported our initial efforts towards designing
and deploying a flexible and easily configurable monitoring frame-
work for ROS-based systems. As part of our ongoing and current
work, we are implementing our framework as a fully self-contained
Python application, complemented by a web-based Monitoring
Dashboard, that can interact with any ROS-based system and pro-
vide configuration templates for constraints and database storage.

We are further expanding our application scenarios, working on
creating a monitoring solution for the DroneResponse [1] system,
a fully autonomous, ROS-based, multi-UAV system.
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