
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Software Architecture For Deformable Linear Object
Manipulation: A Shape Manipulation Case Study

Manuel Zürn1, Markus Wnuk2, Armin Lechler, Alexander Verl
manuel.zuern@isw.uni-stuttgart.de

Institute for Control Engineering of Machine Tools and Manufacturing Units
Stuttgart, Baden-Württemberg, Germany

Figure 1: Key components for deformable linear object manipulation: left two images - perception of the stereo camera. An

observer filters the point cloud and calculates target points shown in picture three as red spheres. After estimating a grasping

point, the robot control plans a trajectory and executes it to shape the deformable linear object.

ABSTRACT

Deformable linear object manipulation is challenging due to their
high dimensional configuration space and their underactuated na-
ture when manipulated by a robotic gripper. Due to the complexity
of the task, robotic manipulation relies on sensors and computation-
ally demanding models, which end up in multiple different software
components interacting with each other. Research in deformable ob-
ject manipulation usually focuses on modeling, planning or control,
without focusing on a software architecture. This paper presents a
novel software architecture for deformable linear object manipula-
tion. The software architecture includes components for deformable
linear object manipulation, namely perception-, observation-, robot
control-, planning-, communication- and decision component. On
top of these components, a layered software architecture consisting
of a decision layer, a skill layer and a functional layer is presented
The proposed concept aims to be a blueprint for a unified soft-
ware architecture satisfying the requirements of robotic systems to

1 The research leading to this publication has received funding from the German
Research Foundation (DFG) as part of the International Research Training Group łSoft
Tissue Roboticsž (GRK 2198/1).
2 Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany´s Excellence Strategy ś EXC 2075 ś 390740016.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RoSE ’22, May 21–29, 2022, Pittsburgh, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

achieve deformable linear object manipulation. The validation of
the software architecture is done in a case study of an autonomous
shape manipulation task, where one robot and a stereo camera
shape a deformable linear object to a predefined desired shape. This
use case is inspired by an automated cable routing process, which
today in the industry is still mainly handled manually and therefore
offers a vast potential for automation.

CCS CONCEPTS

• Computer systems organization→ Robotic autonomy; • Soft-
ware and its engineering→ Use cases.

KEYWORDS

Software architecture, Deformable linear object, Robotic manipula-
tion, Autonomous control

ACM Reference Format:

Manuel Zürn1, Markus Wnuk2, Armin Lechler, Alexander Verl. 2022. Soft-

ware Architecture For Deformable Linear Object Manipulation: A Shape

Manipulation Case Study. In RoSE ’22: 4th International Workshop on Robotics

Software Engineering, May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York,

NY, USA, 8 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Onemajor challenge inmanipulating deformable objects lies in their
high-dimensional configuration space. While the configuration of
a rigid object can be described by knowing their translation and
orientation, deformable objects also need a description of their con-
figuration space. Therefore, deformable objects need new software
solutions for perception, planning, and control to autonomously
fulfill specific tasks for manipulating the deformable object.

1

https://orcid.org/0000-0002-0409-5540
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

RoSE ’22, May 21ś29, 2022, Pittsburgh, USA Manuel Zürn1 , Markus Wnuk2 , Armin Lechler, Alexander Verl

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Due to the additional complexity introduced by the object’s defor-
mation to the manipulation task, deformable object manipulation
requires even more decision-making than rigid object handling.
Therefore, further challenges emerge, which mainly manifests in
new software requirements of the system. As many researchers
create solutions for individual research areas within the interdis-
ciplinary research field of deformable object manipulation, each
researcher relies on their specific software implementation. This
leads to many solutions without specific interfaces for general
deformable linear object (DLO) manipulation, required for compar-
ing the different developed algorithms. Strategic software design
with common software engineering tools helps in reducing the
complexity of deformable manipulation while being able to build
modular and more reusable algorithms [3, 20].

The contribution of this paper is a software architecture for DLO
manipulation. Research in DLO manipulation is often focused on
individual components without considering an architecture combin-
ing the requirements from the different research fields of modeling,
planning, control, and manipulation. For DLO manipulation, inves-
tigating software architectures lead to insights about the interfaces
between the components, which helps in focusing on the indi-
vidual component, enhances comparability, and leads to modular
component design. Modular component design leads to more effi-
cient programming, as complexity reduces using smaller programs,
which also benefits the debugging process. The contributed archi-
tecture, therefore, presents the components and interfaces needed
for a complex manipulation task of autonomously shaping a DLO.

This paper is structured as follows: Section 2 highlights relevant
research for the components used for DLOmanipulation and points
out that the developed solutions are difficult to compare and reuse
as they lack generic software interfaces. Section 3 elaborates the
challenging problem for autonomous shape manipulation, which is
then used to extract the requirements for the architecture design.
The software concept in section 4 introduces the components and
connections required for the DLO manipulation problem. After
introducing a general software concept, section 4 also introduces
a specific implementation of the shape manipulation case study,
consisting of three software layers. The software layers range from
high-level control in the decision layer, over a skill layer with in-
dividual executable skills, to a low-level control in the functional
layer. Section 5 evaluates the presented software architecture in a
case study for autonomous shape manipulation, first by validating
the different skills of the skill layer and afterwards validating the
decision layer in three real-world shaping experiments. Section 6
discusses the framework, concluding that software-driven develop-
ment benefits reusability and generic implementations. Reducing
component complexity through modularization and interface defi-
nition enhances programming efficiency and allows for comparing
different algorithms.

2 STATE OF THE ART

In the vast research field of deformable object manipulation, this pa-
per focuses on robots shaping deformable objects to a desired shape.
To the best of our knowledge, current research for DLO manipula-
tion does not consider specific software architectures. Therefore,
the presented research about deformable object manipulation is

mainly from a control engineering perspective. Recent research
especially covers two different shape manipulation areas.

The first area investigates how two manipulators or one manipu-
lator and one mount can continuously minimize the error between
desired shape and the current shape. This is called shape control,
where the object’s current state gets returned by a 2D or 3D cam-
era. Depending on the model, there exist different visual servoing
approaches [2, 12, 14ś16, 21, 23]. One approach for shape control
focuses on model based controllers, e.g. [12, 14, 16, 23], while oth-
ers use model free controllers [15]. The usual representations for
visual servoing approaches are block diagrams, which show the
relationship of the control loop needed to minimize the individual
shape error function. Shape control research neglects grasping the
objects or regrasping for more complex manipulation.

The second area is complex shape manipulation. Complex ma-
nipulation considers grasping and regrasping the deformable object.
Regrasping can be useful for cloth folding [17], packing a DLO in
a box [9], or trying to knot a DLO with two manipulators [19]. In
general, regrasping the deformable object deals with the complex
problem of finding suitable grasp positions. Lee at al. [8] used a
learning approach to train the robot a pick-and-place action se-
quence for shaping a DLO. They used images with goal positions
and needed 1,000 samples of real-world data in order to perform
their shape manipulation task.

Current research in DLO manipulation is driven from a control
perspective, which usually relies on block diagrams of the control
loop or flow charts for shape manipulation. Systems used for DLO
manipulation are custom-made and hand-coded by the individual
researchers in the area, tailored for a particular manipulation task.
The specific task considered is often a low-level task [7], which does
not consider a higher abstract layer of the system. These systems are
often roughly outlined in a schematic without addressing the soft-
ware architecture used to implement specific connections between
the software components. Specific details about the used compo-
nents and interconnections from a software concept perspective are
missing, although a software architecture would allow easier reuse
of developed algorithms, benefiting interchangeablility and compa-
rability. The use of basic software engineering tools would benefit
the comparability of algorithms, e.g., a strategy design pattern [4]
which can be used for generic interfaces.

Therefore, this paper presents a software architecture for DLO
manipulation with its components and connections. The software
architecture is then used in a three-layered architecture inspired by
[1] to autonomously manipulate a DLO on a table with a robotic
gripper, observed by a 3D stereo camera.

3 PROBLEM FORMULATION

Shape manipulation deals with the problem of finding a set of
actions in order to transfer a DLO from an initial shape to a goal
shape, shown in grey and green in Figure 2.

As DLOs have a high configuration space, it is usually not enough
to perform just one action to reach the target shape. The action
sequence of one action is defined as follows:

(1) Estimate a grasping position T𝑊→𝑇𝑃

(2) Move to grasping position
(3) Grasp

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Software Architecture For Deformable Linear Object Manipulation: A Shape Manipulation Case Study RoSE ’22, May 21ś29, 2022, Pittsburgh, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

TW🠒TP

zW

xW

Gripper

TW🠒GP
Gripper

pTP🠒GP

Initial
Shape

Goal
Shape

Figure 2: Problem formulation of the autonomous shape task.

The sketch illustrates the autonomous shape manipulation

task by showing the top view on the table of Figure 1.

(4) Plan a path p
𝑇𝑃→𝐺𝑃

to a goal position
(5) Move along the path
(6) Release grasp

Note that a robotic gripper can also push or grasp with different
forces. To keep it simple, pushing or different grasping forces are
not considered in the case study.

Each item in the enumeration can be seen as a skill. The skill
to estimate grasping points on the DLO requires the evaluation of
sensor data. The sensor signals offer information about the shape
of the DLO in the sensor coordinate system, which then has to be
transformed to a unified world coordinate system xW, zW.

Vision-based sensors are used for locating a DLO. For 3D infor-
mation, the shape has to be estimated out of point cloud data from
a 3D camera. After estimating the current shape, a grasp point has
to be chosen, such that the motion afterwards reduces the overall
error from the current shape to the goal shape. As there are an
infinite amount of possible grasping points on the DLO, this is a
rather challenging problem.

The following components emerge through the problem formu-
lation to achieve the action sequence.

• A robot control component to execute trajectories and grasp
objects.

• A model representation of the DLO to define a goal shape
and to estimate grasping points of the current shape.

• A camera in order to perceive the current shape.
• An observer which calculates the current model state out

of the sensor signals of the camera.

4 SOFTWARE ARCHITECTURE

A software concept for DLO manipulation has to include multiple
components in order to change and adapt it quickly to new research
contributions. To design a software architecture, all components
and connections of the system have to be defined [22]. Therefore,
at first, the key components for DLO manipulation are extracted
from the requirements and listed before the connections between

them are shown. The specific implementation of the code is done
using the software architecture, which links requirements and code
[5].

One component of the software architecture is a robot control
component. The robot or the robots are needed in order to ma-
nipulate the DLO. As the motion of the robots is subject to errors,
it is necessary to access the robot state for an optional control
loop. Another component of the software architecture is the per-
ception component. It is needed as soon as the state of the DLO
is not precisely known. To interpret the signals of the perception
component and translate it into the state of the model, a model
component and an observer component are needed. The observer
component calculates the state out of the signal of the perception
component combined with the old or initial state of the model
component. A model component can be used for planning spec-
ified DLO motions, as well as grasp point calculation, trajectory
calculation, or goal shape definition. Furthermore, a communica-
tion component is needed, and optionally a viewer component.
The viewer is connected to all data provided by the components,
which makes it suitable for logging and recording data. A particular
requirement about DLO manipulation is that, in contrast to rigid
object manipulation, planning and control are difficult to separate.
On the one hand, local minima in the configuration space result
in conventional optimization-based control methods getting stuck.
On the other hand, global planning is computational expensive due
to the high dimensional shape approximations of the DLO, hence
it is not feasible in real-time control cycles. Therefore, interleaving
planning and control is necessary [10]. To meet this requirement,
a decision component is introduced. The decision component can
decide whether to access planning or control mode.

These components can be developed independently as soon as
the interfaces are defined. The component diagram of the presented
software architecture is shown in Figure 3.

Observer Robot Control

Camera Simulation

Viewer

Decision Layer

Camera API

Robot API

Simulation API

Target
Points

Robot
Control

Simulation
Control

Camera
Control

Filtered
Point Cloud

Observer
Control

Viewer
Control

Communication

2D
Images

Object
State

Robot
StateObserver API

Figure 3: UML component black box diagram of the proposed

software architecture.

4.1 Specific component design for the shape
manipulation

The perception unit of the component diagram is chosen as a cam-
era, while the model component of the architecture is a simulation.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

RoSE ’22, May 21ś29, 2022, Pittsburgh, USA Manuel Zürn1 , Markus Wnuk2 , Armin Lechler, Alexander Verl

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Functional layer

Robot Node

Gripper Node

Camera
Aquisition Node

Observer Node

Camera Filter
Node

H
ig

h-
Le

ve
l S

et
po

in
ts

, T
ar

ge
tp

oi
nt

s

Skills & Resources layer

Sk
ill

 In
te

rf
ac

e
G

oa
ls

Pr
og

re
ss

Perception Skillset
Skill Manager

Resources

Calculate
Point Cloud

Segment
Point Cloud

Calculate Target
Points

Filtered Point Cloud 2D Images

Target Points Object State

Update
Object State

Robot Skillset
Skill Manager

Move Cartesian
Space

Move Joint
Space

Home Robot

Home
GripperGrasp

Resources
Robot State Gripper State

Robot

Gripper

3D Camera

Franka Emika Panda

Franka Emika Hand

Nerian SceneScan Pro

Decision layer
Flow Chart
Start State

User defined
Goal Shape

Track Object

Object Shape
==

Goal Shape?

User

End
Program

True
Calculate next
Grasp Point

False

Grasp Point valid?
Mark Grasp Point

as
invalid

Skill Move Joint
Space

True

Skill Grasp

Skill Move
Cartesian Space

False

Changed
convergence

criteria?

True

Track Object

False

R
T-

Lo
op

U
D

P

Figure 4: Specific implementation of the used three-layer software architecture for autonomous shape manipulation. It

illustrates the hardware of the case study connected with the functional layer, the flow chart of the decision layer for high-level

abstract task formulation, and the individual skills of the skill layer. Further details of the flow chart are shown in Figure 6.

Cameras are cheap and the most popular choice in recent litera-
ture for state-feedback of DLOs. With the simulation, it is possi-
ble to predict future states of the object and satisfy constraints of
the object to be more robust to outliers of the camera component.
The camera component accesses the camera application program-
ming interface (API) of a stereo camera. For interchangeable reg-
istration algorithms, the observer uses an observer API which is
implemented using a strategy design pattern [4]. Three different
observers are implemented in order to be able to choose different
strategies for different scenarios. Structure preserve registration
[18], a self-organizing map [24] as well as the coherent point drift
method [11].

The overall software concept includes five processes. The main
process is used as a decision layer to start all sub-processes and to
execute skills on the robot, which is connected to the robot API.
Furthermore, the decision layer controls each component and exe-
cutes skills. The camera process receives images from the camera
API, filters the images and creates a filtered point cloud, and pub-
lishes both. The observer process subscribes to point clouds of the
camera and the old or initial state from the simulated model and
afterwards calculates target points. The simulation is used to drag
the simulated model to the calculated target points of the observer
and publishes then the updated object state. The viewer visualizes
the point cloud, the robot’s current configuration, and the target
points to check if the algorithms work as intended.

4.2 Software Layers used for Autonomous
Shape Manipulation Architecture

To reduce complexity and build up upon a common practice in
software engineering, we divide the task into a decision layer, a
skill layer, and a functional layer [1, 6, 13], shown in Figure 4.

The decision layer is used to formulate an abstract task that
must be fulfilled to achieve the shape manipulation task. Our flow

chart is structured as follows: A user can interactively choose a
goal shape by drag and drop using the interactive frames. The
interactive frames are then used in simulation to apply a force on
the dragged bodies. Note that there are no restrictions in choosing
a goal position. However, as the simulation applies forces onto the
simulated object, the simulation constrains the movement to the
predefined DLO model.

One heuristic that can be used to decide the grasping point
is discretizing the object and afterwards calculating the largest
distance between the discretized initial shape and the discretized
goal shape, which returns one specific grasping point.

After grasping, a path is calculated to move the grasped point to
the goal point. The path can then be calculated by the skill layer
and commanded to the robot control node. As different trajectories
with different velocity profiles may result in different goal shapes
of the DLO, the goal shape has to be observed again in order to
validate the correct shape of the object.

One way to reach a goal configuration is to execute the above
action sequence iteratively. This is implemented in the decision
layer. After setting the goal positions, motions are performed until
a tracking threshold is reached. This is shown in the flow chart in
Figure 4.

The skill and resources layer includes the high-level interface
for operating the perception and robot skillset. Simulation with
the model of the DLO, as well as camera and observer component
of Figure 3 are included in the perception skillset, whereas the
communication component handles the interface between decision
layer and skill layer. The skill layer includes functionality to move
the robot, tomove the gripper, to calculate and segment point clouds,
and to calculate target points, which are shown as red spheres in
Figure 5.

The functional layer is the low-level interface to the connected
hardware. Connected is a Franka Emika Panda robot with seven

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Software Architecture For Deformable Linear Object Manipulation: A Shape Manipulation Case Study RoSE ’22, May 21ś29, 2022, Pittsburgh, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

degrees of freedom (DOF) over the Franka control interface 1 with
self-written motion planning and control, as well as a Nerian Sce-
neScan Pro stereo camera connected over the camera API 2.

4.2.1 Interface between software layers. The interfaces between
the software layers enable their communication. As all individual
components shown in Figure 3 are connected with the decision
layer, the decision layer acts as a master. For executing functions on
the separate processes, the decision layer publishes the component
name, the skill name, and optional arguments. See Algorithm 1.

Algorithm 1: Decision layer communication to skill Layer.

Input :String component 𝑐 , String skill 𝑠 and Arguments
𝑎𝑟𝑔𝑠

Output :Boolean 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

1 try:

2 𝑠𝐴𝑟𝑔𝑠 ←serialize(𝑎𝑟𝑔𝑠);

3 𝑚𝑠𝑔← 𝑐, 𝑠, 𝑠𝐴𝑟𝑔𝑠;

4 sendMessage(𝑚𝑠𝑔);

5 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝑇𝑟𝑢𝑒;

6 catch ConnectionError:

7 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝐹𝑎𝑙𝑠𝑒;

8 end

9 return 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

This message is then used to control and execute the different
skills of the skill layer. Furthermore, it is used to configure the
filters of the camera to extract the model of the environment. Each
component is then reading the message and executing the skills,
see Algorithm 2. This allows for distributed components, so that
each component can run in its own process.

Progress is detected of the decision layer by subscribing on the
object state, see also Figure 3.

The skill layer is separated from the functional layer to have
independent hardware choices. A high-level interface in the form
of abstract functions can be called directly from each component
at the functional layer. The functional layer includes the specific
APIs used to communicate with the hardware.

5 CASE STUDY OF AUTONOMOUS SHAPE
MANIPULATION

This section consists of first presenting the different skills and after-
wards evaluating the architecture by solving a shape manipulation
problem formulated in Figure 2.

5.1 Evaluation of the Skill layer

Each skill is first evaluated separately in the evaluation section
before running the decision layer. The different skills are shown in
Figure 5. First, the point cloud is calculated from the perception unit
and afterwards loaded into the simulation environment. To segment
the environment from the DLO, a brightness filter and a box filter
are used. Afterwards, the point cloud should only contain outliers
and points of the DLO. To calculate the target points, the observer

1https://github.com/frankaemika/libfranka
2https://nerian.com/support/documentation/api-doc

Algorithm 2: Skill execution interface of the components.

Input :

Output :Boolean 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

1 try:

2 𝑚𝑠𝑔← recvMessage();

3 𝑐, 𝑠, 𝑠𝐴𝑟𝑔𝑠 ←𝑚𝑠𝑔 𝑎𝑟𝑔𝑠 ← unserialize(𝑠𝐴𝑟𝑔𝑠);

4 try:

5 if 𝑐 = thisComponent then

6 if 𝑠 = executableSkill then

7 𝑠𝑘𝑖𝑙𝑙 ← getSkill(𝑠);

8 skill(𝑎𝑟𝑔𝑠);

9 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝑇𝑟𝑢𝑒;

10 else

11 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝐹𝑎𝑙𝑠𝑒;

12 end

13 else

14 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝐹𝑎𝑙𝑠𝑒;

15 end

16 catch SkillError:

17 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝐹𝑎𝑙𝑠𝑒;

18 end

19 catch ConnectionError:

20 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝐹𝑎𝑙𝑠𝑒;

21 end

22 return 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

interface is used, which calculates target points from previously
known positions and the captured point cloud, shown in Figure 3.
A PD controller is used in the simulation to track the object to the
calculated target points. Afterwards, the viewer generates three
interactive frames for the operator to shape a custom goal shape.
The grasp point will be calculated, and the robot will be commanded
to move to the grasping point. After grasping, the robot has to move
to the goal point to establish the user-defined shape.

5.2 Evaluation of the decision layer

The flow chart for the shape manipulation task is shown in Figure 6
and in the decision layer in Figure 4. After starting the program, the
user inputs a desired goal shape. Three movable coordinate systems
define the goal shape, see Figure 5 (f). After setting the goal shape,
the simulated DLO object gets tracked to the observed target points.
If the object shape equals the desired goal shape, the program ends.
The skill compares the desired shape with the current shape. The
resulting error can then be compared to an empirically chosen
convergence threshold, where values below the threshold indicate
convergence.

After calculating the grasp point, which is farthest away from
its goal point, the grasp point is checked. If the grasp point is valid,
the robot grasp- and moving sequences start, otherwise the grasp
point is marked invalid, and the next best grasp point is selected.

The robot skills consist of moving in joint space to avoid robotic
singularities, grasping, and moving in cartesian space for the pick-
and place operation. Checking the convergence criteria shows if the
robot has manipulated the DLO. If the convergence criteria do not

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

RoSE ’22, May 21ś29, 2022, Pittsburgh, USA Manuel Zürn1 , Markus Wnuk2 , Armin Lechler, Alexander Verl

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Start shape control (b) Apply brightness filter (c) Apply box filter (d) Get target points

(e) Drag object to target points (f) Interactive choice of goal position (g) Grasp (h) Move to goal point

Figure 5: Sequence of skill executions, repeat (d),(e),(g),(h) until converged.

change, it marks the grasp point as invalid. Otherwise, all invalid
marked grasping points reset.

The sequence of comparing the object shape to the goal shape
starts again, which reduces the shape error iteratively.

Start State

User defined
Goal Shape

Track Object

Object =
Goal Shape?

User

End program

True

Calculate next
Grasp Point

False

Grasp Point
valid?

Mark Grasp Point
as

invalid

False

Skill Move
Joint Space

True

Skill Grasp

Skill Move
Cart Space

False

Changed
convergence

criteria?

True

Track Object

Figure 6: Flow chart of the autonomous shape manipulation

task.

5.3 Shape manipulation experiments

Five experiments validate the software architecture. Three shown
in Figure 8 by choosing a user-defined shape, as well as two experi-
ments with a predefined shape shown in Figure 7. The number of
individual actions for Figure 7, as well as the convergence criteria
and convergence value are shown in Table 1.

(a) I to I shaping.

(b) Random to S shaping.

Figure 7: (a) I to I shaping, starting at the blue dots and ending

at the green dots. (b) Random start to S shaping.

The corresponding live images of the stereo camera are shown
on the right of each simulation image. Red spheres indicate target
positions calculated by the observer, while the simulated DLO is
indicated in blue. Black cubes represent the segmented point cloud
calculated from the stereo camera images.

Table 1: Number of actions until the DLO reaches its final

shape determined by a root mean square error < 1.2cm, see

Figure 7.

I to I shaping Random to S shaping

Actions 5 30

RMSE 0.85 cm 0.95 cm

Convergence Criteria 1.2 cm 1.2 cm

Before doing the experiments, the convergence threshold has
to be set. Choosing a high convergence threshold results in high
shape errors, whereas a low convergence threshold can result in an
endless refinement loop, as no break conditions for the robot are
implemented. This results out of the stiffness of the DLO. Manip-
ulation on one end can increase the shape error of the other end
through the applied manipulation forces, as it always affects the
whole shape of the DLO. To avoid this, the convergence threshold is

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Software Architecture For Deformable Linear Object Manipulation: A Shape Manipulation Case Study RoSE ’22, May 21ś29, 2022, Pittsburgh, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

determined empirically in the experiments and is set to a reasonable
low shape error, see Figure 8.

In the first experiment, the DLO lies down in a random but not
overlapped position. After tracking, the user input was to shape
approximately an "I" shape. The final result shows some slight de-
viation on the bottom, which results in an incomplete point cloud
from the box filter. The second experiment was to shape an "S"
shape out of an "I" starting configuration. The third experiment was
to shape an "I" shape out of a "S" starting configuration. Despite
each manipulation task requiring the robot to recognize different
object shapes, determine varying grasping positions for each shape,
and follow different trajectories, these tasks could all be solved
by the same flow chart in the decision layer. This shows how the
abstraction of the presented software architecture from the un-
derlying functional and skill layer to the high-level decision layer
facilitates DLO manipulation and extends applicability for different
manipulation scenarios.

6 CONCLUSION

This paper presents a software architecture for DLO manipulation.
It is used in three autonomous shape manipulation experiments
with a skill-based 3-layer software architecture. The presented
three-layer software architecture helps in reducing the complexity
by modularizing different skills. Table 1 proves that the program-
ming complexity stays the same even if the number of actions to
achieve the desired shape increase. These skills are implemented
separately, making it possible to verify the correct skills individually
without testing the whole action sequence. As the decision layer
makes it possible to shape a DLO, it is further possible to move the
decision layer to a skill. If further development requires a skill to
shape a DLO, the future decision layer would be able to build up
upon the current development, which makes it reusable by design.

For validation of the software architecture, an autonomous shape
manipulation demonstration was implemented. The demonstration
allows the creation of high-level flow charts for an abstract for-
mulation of goals. At the same time, skills can be implemented
and verified separately with a connected functional layer as a low-
level hardware interface. The presented demonstration validates
the architecture design with various shape manipulation tasks.

Other skills like pushing the DLO would improve the shape
demonstration, as pushing does not have the same impact on the
shape as grasping. In the future, it will be investigated how the
presented architecture can be used for more complex manipulation
tasks. Considering the high potential in wire harness assembly or
routing scenarios, more work will bridge the gap from academic to
industrial examples.

ACKNOWLEDGMENTS

The research leading to this publication has received funding from
the German Research Foundation (DFG) as part of the Interna-
tional Research Training Group łSoft Tissue Roboticsž (GRK 2198/1).
Funded by Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany´s Excellence Strategy ś EXC
2075 ś 390740016.

REFERENCES
[1] Alexandre Alborne, David Doose, Christophe Grand, Charles Lesire, and Au-

gustin Manexy. 2021. Skill-Based Architecture Development for Online Mission
Reconfiguration and Failure Management. In 3th International Workshop on
Robotics Software Engineering (RoSE’21). Vol. 3.

[2] Miguel Aranda, Juan Antonio Corrales Ramon, Youcef Mezouar, Adrien Bartoli,
and Erol Özgür. 2020. Monocular Visual Shape Tracking and Servoing for Isomet-
rically Deforming Objects. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 7542ś7549. https://doi.org/10.1109/IROS45743.2020.
9341646

[3] Donald Bell. 2004. UML basics: The component diagram. IBM Global Services
(2004).

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1997. Design
Patterns Elements of Reusable Object-Oriented Software.

[5] David Garlan. 2000. Software architecture: a roadmap. In Proceedings of the
Conference on the Future of Software Engineering. 91ś101.

[6] José Carlos González, José Carlos Pulido, and Fernando Fernández. 2017. A
three-layer planning architecture for the autonomous control of rehabilitation
therapies based on social robots. Cognitive Systems Research 43 (2017), 232ś249.
https://doi.org/10.1016/j.cogsys.2016.09.003

[7] Rafael Herguedas, Gonzalo López-Nicolás, Rosario Aragüés, and Carlos Sagüés.
2019. Survey on multi-robot manipulation of deformable objects. In 2019 24th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA). 977ś984. https://doi.org/10.1109/ETFA.2019.8868987

[8] Robert Lee, Masashi Hamaya, Takayuki Murooka, Yoshihisa Ijiri, and Peter Corke.
2022. Sample-Efficient Learning of Deformable Linear Object Manipulation in
the Real World Through Self-Supervision. IEEE Robotics and Automation Letters
7, 1 (2022), 573ś580. https://doi.org/10.1109/LRA.2021.3130377

[9] Wanyu Ma, Bin Zhang, Lijun Han, Shengzeng Huo, Hesheng Wang, and
David Navarro-Alarcon. 2021. Action Planning for Packing Long Linear
Elastic Objects into Compact Boxes with Bimanual Robotic Manipulation.
arXiv:2110.11652 [cs.RO]

[10] Dale McConachie, Mengyao Ruan, and Dmitry Berenson. 2020. Interleaving
Planning and Control for Deformable Object Manipulation. In Robotics Research,
Nancy M. Amato, Greg Hager, Shawna Thomas, and Miguel Torres-Torriti (Eds.).
Springer International Publishing, Cham, 1019ś1036.

[11] Andriy Myronenko and Xubo Song. 2010. Point set registration: coherent point
drift. IEEE transactions on pattern analysis and machine intelligence 32, 12 (2010),
2262ś2275. https://doi.org/10.1109/TPAMI.2010.46

[12] David Navarro-Alarcon and Yun-Hui Liu. 2018. Fourier-Based Shape Servoing:
A New Feedback Method to Actively Deform Soft Objects into Desired 2-D
Image Contours. IEEE Transactions on Robotics 34, 1 (2018), 272ś279. https:
//doi.org/10.1109/TRO.2017.2765333

[13] Issa A.D. Nesnas, Anne Wright, Max Bajracharya, Reid Simmons, and Tara Estlin.
2003. CLARAty and challenges of developing interoperable robotic software.
In Proceedings / 2003 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2003). IEEE Operations Center, Piscataway, NJ, 2428ś2435.
https://doi.org/10.1109/IROS.2003.1249234

[14] Jiaming Qi, Guangfu Ma, Jihong Zhu, Peng Zhou, Yueyong Lyu, Haibo Zhang,
and David Navarro-Alarcon. 2021. Contour Moments Based Manipulation of
Composite Rigid-Deformable Objects With Finite Time Model Estimation and
Shape/Position Control. IEEE/ASME Transactions on Mechatronics (2021), 1ś12.
https://doi.org/10.1109/TMECH.2021.3126383

[15] Romain Lagneau, Alexandre Krupa, and Maud Marchal. 2020. Automatic Shape
Control of Deformable Wires based on Model-Free Visual Servoing. (2020).

[16] Kenta Tabata, Hiroaki Seki, Tokuo Tsuji, Tatsuhiro Hiramitsu, and Masatoshi
Hikizu. 2020. Dynamic manipulation of unknown string by robot arm: realizing
momentary string shapes. ROBOMECH Journal 7, 1 (Dec. 2020). https://doi.org/
10.1186/s40648-020-00187-w

[17] Daisuke Tanaka, Solvi Arnold, and Kimitoshi Yamazaki. 2021. Disruption-
Resistant Deformable Object Manipulation on Basis of Online Shape Estimation
and Prediction-Driven Trajectory Correction. IEEE Robotics and Automation
Letters 6, 2 (2021), 3809ś3816. https://doi.org/10.1109/LRA.2021.3060679

[18] Te Tang and Masayoshi Tomizuka. 2019. Track deformable objects from point
clouds with structure preserved registration. The International Journal of Robotics
Research (2019), 027836491984143. https://doi.org/10.1177/0278364919841431

[19] Te Tang, Changhao Wang, and Masayoshi Tomizuka. 2018. A Framework for
Manipulating Deformable Linear Objects by Coherent Point Drift. IEEE Robotics
and Automation Letters 3, 4 (2018), 3426ś3433. https://doi.org/10.1109/LRA.2018.
2852770

[20] Richard N. Taylor and Andre van der Hoek. 2007. Software Design and Architec-
ture The once and future focus of software engineering. In Future of Software
Engineering (FOSE ’07). 226ś243. https://doi.org/10.1109/FOSE.2007.21

[21] Bao Thach, Brian Y. Cho, Alan Kuntz, and Tucker Hermans. 2021. Learning Visual
Shape Control of Novel 3D Deformable Objects from Partial-View Point Clouds.
CoRR abs/2110.04685 (2021). arXiv:2110.04685 https://arxiv.org/abs/2110.04685

7

https://doi.org/10.1109/IROS45743.2020.9341646
https://doi.org/10.1109/IROS45743.2020.9341646
https://doi.org/10.1016/j.cogsys.2016.09.003
https://doi.org/10.1109/ETFA.2019.8868987
https://doi.org/10.1109/LRA.2021.3130377
https://arxiv.org/abs/2110.11652
https://doi.org/10.1109/TPAMI.2010.46
https://doi.org/10.1109/TRO.2017.2765333
https://doi.org/10.1109/TRO.2017.2765333
https://doi.org/10.1109/IROS.2003.1249234
https://doi.org/10.1109/TMECH.2021.3126383
https://doi.org/10.1186/s40648-020-00187-w
https://doi.org/10.1186/s40648-020-00187-w
https://doi.org/10.1109/LRA.2021.3060679
https://doi.org/10.1177/0278364919841431
https://doi.org/10.1109/LRA.2018.2852770
https://doi.org/10.1109/LRA.2018.2852770
https://doi.org/10.1109/FOSE.2007.21
https://arxiv.org/abs/2110.04685
https://arxiv.org/abs/2110.04685

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

RoSE ’22, May 21ś29, 2022, Pittsburgh, USA Manuel Zürn1 , Markus Wnuk2 , Armin Lechler, Alexander Verl

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 8: Three experiments shaping a DLO through multiple grasps. A single image contains the simulation including the

loaded point cloud, target points and model of the DLO, as well as the synchronized robot and the goal shape. The right image

is the associated 2D image of the left camera. (a), (b), (c): Start tracking. (d), (e), (f): Define the target shape. (p), (q), (r): final state.

All other images are states between the three experiments.

[22] Mohammad Hadi Valipour, Bavar Amirzafari, Khashayar Niki Maleki, and Negin
Daneshpour. 2009. A brief survey of software architecture concepts and service
oriented architecture. In 2009 2nd IEEE International Conference on Computer
Science and Information Technology. 34ś38. https://doi.org/10.1109/ICCSIT.2009.
5235004

[23] Mingrui Yu, Hanzhong Zhong, and Xiang Li. 2021. Shape Control of Deformable
Linear Objects with Offline and Online Learning of Local Linear Deformation
Models. CoRR abs/2109.11091 (2021). arXiv:2109.11091 https://arxiv.org/abs/
2109.11091

[24] Manuel Zürn, Markus Wnuk, Christoph Hinze, Armin Lechler, Alexander Verl,
and Weilang Xu. 2021. Kinematic Trajectory Following Control For Constrained
Deformable Linear Objects. In International Conference on Automation Science
and Engineering. Vol. 17. 1701ś1707.

8

https://doi.org/10.1109/ICCSIT.2009.5235004
https://doi.org/10.1109/ICCSIT.2009.5235004
https://arxiv.org/abs/2109.11091
https://arxiv.org/abs/2109.11091
https://arxiv.org/abs/2109.11091

	Abstract
	1 Introduction
	2 State of The Art
	3 Problem formulation
	4 Software Architecture
	4.1 Specific component design for the shape manipulation
	4.2 Software Layers used for Autonomous Shape Manipulation Architecture

	5 Case Study of autonomous shape manipulation
	5.1 Evaluation of the Skill layer
	5.2 Evaluation of the decision layer
	5.3 Shape manipulation experiments

	6 Conclusion
	Acknowledgments
	References

