
Should Robotics Engineering Education Include Software
Engineering Education?

Milda Zizyte∗
milda@brown.edu

Computer Science Department
Brown University

Providence, Rhode Island, USA

Trenton Tabor∗
ttabor@andrew.cmu.edu

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

0%
20%
40%
60%
80%
100%

Agile Processes

Component Based SE

Object Oriented Programming
Code Reviews

Software Testing

Integration/Systems Testing
Code Reuse

Documentation

Hardware/Physical Testing

Software Engineering Tools

Requirements Engineeering

Not Mentioned Related Topic Mentioned Mentioned Emphasized

Figure 1: Summary of prevalence of Robotics Software Engineering Practices [8] in Robotics Bachelors of Science Programs.

ABSTRACT
Multiple universities across the United States now offer bachelor’s
degrees in robotics, which aim to prepare students to work in the
robotics industry. To judge how well these programs are providing
software engineering training, we evaluate whether these programs
teach the software engineering practices that are required for ro-
botics software engineering. We compile an updated list of robotics
bachelor’s degree programs and measure whether the curriculum
of each program claims to teach a specific practice. We find that
some of these practices are not mentioned in the curricula, and that
some are only taught implicitly in long-term project courses. These
project courses vary in scope, guidance, and structure. This implies
that robotics bachelor’s degrees may not be preparing students to
engage with the practices in the workforce.

CCS CONCEPTS
• Computer systems organization → Robotics; • Social and
professional topics→ Software engineering education.

KEYWORDS
Robotics Education, Robotic Software Engineering, University Cur-
riculum

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Milda Zizyte and Trenton Tabor. 2022. Should Robotics Engineering Educa-
tion Include Software Engineering Education?. In Proceedings of The 44th
International Conference on Software Engineering (ICSE 2022). ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In 2007, the first "Robotics" Bachelors of Science was launched
in the US [9]. After 15 years, by our count, there are at least 16
universities in the US offering a robotics degree. These programs
claim to prepare students for industry, research, or academia after
graduation. Developing robots in the real world does not simply
require technical and theoretical skills, but the ability to apply
engineering (including software) practices.

As researchers and practitioners in Robotics Software Engineer-
ing (RSE), we were curious how these programs chose to prioritize
and emphasize the Software Engineering (SE) concepts students
needed in robotics industry. Generally "Engineering" and "Engi-
neering Technology" programs are ABET-accredited for a "general
engineering" category and are given flexibility to emphasize or
teach different topics depending on institution1. Contrast these
with the SE degree, for which IEEE and ACM release curriculum
guidelines every 10 years [1].

Previous work, by Garcia, et al., has studied which RSE practices
are central to robotics, finding trends in common practices, such
as using Agile methodologies and implementing object-oriented
code [8]. We sought to evaluate the degree to which existing RSE
programs actually teach these practices. To do so, we developed
an up-to-date list of robotics programs and then compared a pre-
viously published list of RSE practices to the publicly available
curricula for each program. We find that many of these programs
omit formal training in these common practices, which may lead
to underprepared robotic software engineers.
1Carnegie Mellon University’s "Robotics Major" does not publicly list an accreditation

https://orcid.org/1234-5678-9012
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Zizyte and Tabor

2 METHOD
To examine how much focus Robotics BS programs put into each of
Garcia’s practices [8], we developed a process of counting mentions
in course descriptions. These course descriptions are often publicly
available and short, providing an efficient window into the topics for
a degree. We built a sufficient corpus of descriptions, by performing
a census of Robotics BS programs offered in the USA.

2.1 University programs studied
We chose our study universities by performing an independent
search followed by reviewing the literature. We only considered
USA-based programs. Initially, we performed a web search for Ro-
botics BS programs. Some programs were in our top results while
others appeared in aggregator lists. We found that our web search
was able to find more programs if the query included the acronym
"ABET", an accreditation board responsible for certifying "Robotics
Engineering" programs. After completing our search, we compared
our list of Bachelor of Science Robotics programs to a less recent
survey [6], providing twomore programs. For the Engineering Tech-
nology programs in our study, we chose to include them alongside
our ten "Robotics Engineering" and one "Robotics" program, since
industry often considers them equivalent [10]. 2. The programs
included in our analysis are summarized in Table 1.

2.2 SE Concepts Used in Robotics Development
We based our list of common SE practices in robotics on Garcia et
al. [8], who conducted 18 semi-structured interviews of robotics
experts and also collected 156 responses to an online survey. While
they were also able to gather data on both the perception of the
difference between SE and RSE and the challenges faced in RSE,
we direct your attention to their RQ1: "What practices are applied
in SE for service robots?". This question was examined in both the
survey and interviews; by comparing both, the authors were able to
discover that practitioners were likely using different terminology
for the same activities. The survey is available and uses SE-specific
terms; e.g. the options for "Which of these software engineering
processes do you apply in your projects?" were:

• Waterfall
• Hybrid (e.g., V-Model, Spiral)
• Agile (e.g., SCRUM, Extreme Programming)
• Other (please specify below)

These options, while they contain examples, do not contain expla-
nations. Many RSE practitioners may lack formal training in these
terminologies and techniques.

From Garcia’s work, we selected the SE practices that were re-
ported to be used by over half of the industry practitioners surveyed.
While Garcia focused on Service Robotics, our experience leads us
to believe that the practices studied are applicable to all RSE.

2.3 Evaluation of coursework
Two authors of this work independently reviewed the coursework
of each program to evaluate to what extent the SE practice was
mentioned in course descriptions.
2We excluded robotics BS programs that did not include a major programming com-
ponent. These programs were from Central Connecticut State University, Gannon
University, and Pennsylvania College of Technology.

Table 1: Bachelor of Science programs analyzed.

Major University

Robotics Engineering Lawrence Technological
University

Robotics Engineering Worcester Polytechnic Institute
Robotics Engineering University of Detroit Mercy
Robotics Engineering Lake Superior State University
Robotics Engineering University of Michigan
Robotics Engineering University of Hartford
Robotics Engineering Arizona State University
Robotics Engineering Widener University
Robotics Engineering UC Santa Cruz
Robotics Engineering Miami University
Mechatronics and

Robotics Engineering Trine University

Mechatronics and
Robotics Engineering

Southern Illinois
University Edwardsville

Robotics and
Control Engineering United States Naval Academy

Robotics Engineering
Technology Purdue University

Robotics & Controls
Systems Technology Millersville University

Robotics and
Manufacturing

Engineering Technology

Rochester Institute
of Technology

Robotics
(Second major only) Carnegie Mellon University

Our categories were:
Not Mentioned - no mention of concept or any related concept

in any course required by the major.
Related Topic Mentioned - concept in question was not mentioned,

but we determined that a related topic was, in at least one course
description. For example, if they discussed hardware debugging,
we considered that to be related to Hardware/Physical Testing.

Mentioned - concept is mentioned by name in at least one course
description, with some exceptions described below.

Emphasized - concept is highlighted in more than one course
description, or the course description makes clear that the concept
is the primary focus of the course.

Because course syllabi were often not publicly available for these
courses, we used only public-facing course descriptions when per-
forming our analysis. Every school provided such course descrip-
tions in a relatively consistent format and level of detail.

To ensure that this methodology would be sufficient for recog-
nizing SE practices if they appeared in a program, we individually
examined 6 SE programs with the same criteria. With the exception
of the Hardware/Physical Testing, in this calibration we found all of
these programs mentioned or often emphasized these practices.

Disagreements of classification were resolved using deliberation.
We ignored courses that were optional or may not be taken by all
students going through a program.

Should Robotics Engineering Education Include Software Engineering Education? ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

In some situations, we refined our classification criteria based
on an agreed-upon understanding of SE concepts and/or curricula.
These criteria were:

• If a course had a long-term, structured team project compo-
nent, we assigned "related topic mentioned" to the evaluation
of Agile Processes. This was based on the idea that, through-
out a semester or longer, a team would perform some sort
of team-based iterative management and design towards a
final product.

• If a course description uses "modular" as a term or includes
education about the Robotics Operating System (ROS), we
assigned "mentioned" to the evaluation of Component-Based
SE. ROS abstracts robot behavior into separate processes or
components that communicate via specific message-passing
interfaces, and therefore requires thinking about software
development in terms of components.

• If a course had a requirement for writing reports for a long-
term, structured project, we assigned "mentioned" to the
evaluation of Documentation. If this description went in-
depth with the sorts of materials expected in these reports,
such as safety considerations and evaluations of alternatives,
we assigned "emphasized."

• If a course mentions finding customer/industry needs as part
of conceptualizing a project, we assigned "mentioned" to the
evaluation of Requirements Engineering, as we considered
this synonymous with requirements elicitation.

A capstone or capstone-style course is a dedicated design or
project course that involves a long-running group project taken
from conception to implementation. These courses often had "cap-
stone" in the title, but we also included others that fit our definition.
For such courses, we measure the length (in terms) of the capstone-
style course, whether the course involves a final presentation to an
outside audience, and what terms come up most frequently in the
course descriptions, in aggregate.

3 RESULTS AND DISCUSSION
We discovered several patterns in the program curricula, including
which practices are taught and which are overlooked, and how
capstone-style courses are an opportunity for structured SE learn-
ing.

3.1 SE practices taught in robotics programs
We summarize our results in Figure 1, showing an anonymized
distribution of the emphasis given to each of Garcia’s practices
in each program. As evidenced in the figure, there was a wide
variety in coverage for these topics. Most programs had at least
some mention of Object Oriented Programming, while no program
mentioned Code Reviews. Of our study programs, only one required
an explicit course in SE, but all of them mentioned at least one of
these practices in another course.

3.2 Under-emphasized Practices
We noticed several practices that were not explicitly mentioned in
the descriptions in our study. In particular, Agile Processes, Code
Reuse, and the QA practices of Integration/Systems Testing, and Code
Reviews, were not included by name. It is possible that some of these

were overlooked in our review, due to terminology mismatch. Gar-
cia found that many practitioners were performing Requirements
Engineering but claimed not to be. We similarly found that many
programs taught the concepts of Requirements Engineering without
ever using the phrase.

We are concerned about the omission of these practices, since
students expect programs to reflect the activities and skills needed
to succeed in the workplace. If they’re not emphasized in the course
descriptions, students may discount their importance.

3.2.1 Agile Processes. In Section 2.3, we describe counting any
long term structured project as a "related topics mentioned" for
Agile practices. While one description mentioned "cyclic design
iteration" directly, most programs do not describe how they encour-
age students to structure their own engineering practice. Garcia’s
survey showed a clear preference for an Agile development struc-
ture. Recent quantitative research demonstrates that utilizing a
formal SCRUM structure can help students develop these skills [11].
However, we can not tell from course descriptions if students are
required or even encouraged to follow any such process.

3.2.2 Reuse. Garcia identified three important bottlenecks to fur-
ther reuse of code. The first is the code itself, including a number of
interface issues. Then, there is a lack of documentation for reusable
components. Finally there are licensing issues from the available
tools from the community. However, there is still significant reuse
in spite of these difficulties.

Recognizing these issues, it seems that there is a need in robotics
software education to prepare students to overcome and prevent
these issues. We found very little discussion of reuse in the studied
course descriptions. In Figure 1, we show that no programs empha-
sized and only two programs evenmentioned code reuse. Those two
mentioned reusable objects, but there was no mention of design for
reusable libraries or frameworks. It does not appear that students
are, for example, being exposed to designing idioms and patterns
for whole libraries, which may perpetuate the issues in industry.
An added benefit to consciously designing for reusable libraries and
frameworks is that the design documents are themselves useful,
widening the second bottleneck as well.

None of the course descriptions we examined discussed analyz-
ing licenses in the SE process, although these issues are discussed in
capstone courses, as students are integrating a larger system from
many parts. We also didn’t see any mention of the common engi-
neering decision of build vs. buy for custom hardware or software
components, which can have a large impact on a project scope [7].

3.2.3 Quality Assurance Practice. According to Garcia, the two
most common quality assurance practices in RSE are Integration
Tests and Code Reviews. Again, these practices were not empha-
sized in the examined course descriptions, but may be taught or
learned independently by students or experientially learned over
the duration of another course. If these practices are not covered,
however, this mismatch may be critical. We found a lot of men-
tion and emphasis in courses on software design, but much less on
demonstrating that the software does what it was designed to do.
While it can be difficult to build a lesson around code review, we’re
excited to see new techniques in this area [2].

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Zizyte and Tabor

3.3 Capstone-style courses
All but one of the programs required a capstone-style course. Most
capstones were two terms long, one was one semester long but a
follow-on to a professional design course, one was two or three
semesters long depending on if a student did a senior project, and
one had three 2-semester sequences spread out over three years.

3.3.1 Audience. Capstone courses all involved presenting the final
project in some structured way. In terms of audience,

(1) one school required a capstone presentation made to a panel
of engineering faculty;

(2) three schools had capstone-style courses that specifically
mentioned industry representatives at final presentations;

(3) one school had a capstone that was sometimes done with
industry partnership, depending on the project;

(4) one capstone sequence included a co-op practicum, where
students worked part-time off-campus in an industry job;
and

(5) the other ten schools that offered a capstone-style course did
not indicate a specific audience for capstone presentations.

We found that several schools used the capstone-style courses
to expose students to industry partners. The prevalence of industry
partners for these specific courses indicates that they are a way
that schools facilitate an interface between students and industry.
Students have an chance to demonstrate their engineering skills
and get direct feedback from industry.

3.3.2 Capstones as SE practicum. One commonality that we no-
ticed across programs was that much of the coverage of agile, doc-
umentation, requirements engineering, and testing practices in the
curricula we studied came from capstone or capstone-style courses.

We also noticed some common themes in their curricula. In par-
ticular, these courses start with identification of needs, then have
students go through a process of specification, design, prototyping,
and final product. Documentation is often emphasized. When eval-
uating common language across the descriptions of these courses
by looking at the most frequent words across all descriptions, we
found mentions of the following categories:

• Teamwork ("teams", "management")
• Forms of communication ("presentation," "report," "proposal")
• Design ("design," "planning," "constraints")
• Implementation ("development," "prototype")
• Evaluation ("testing," "performance," "validation")
• Technical skills ("robotics," "knowledge")

This indicates that students are learning and applying SE in their
capstone-style courses. What we cannot determine from course de-
scriptions alone is whether they are given frameworks for learning
these concepts, or if they are tasked to figure out the concepts by
"learning by doing." Because these courses vary in scope, guidance,
and structure, it is hard to judge how much SE students are being
taught deliberately.

3.3.3 Capstone opportunities. Work in SE education suggests that
a capstone course is an opportune place for students to build "soft
skills," as they are more confident in their technical skills by that
point [3]. For robotics, we see an opportunity to emphasize SE

education in these programs by injecting more structured SE frame-
works in these courses or their prerequisites. If students get the
chance to interface with industry in their capstone-style course, this
is also an opportunity to get real-world feedback on the applicability
of the practices taught.

4 RELATEDWORK
Five years ago, a subset of the programs we studied were bench-
marked for general concepts covered, faculty affiliation, and accred-
itation [6]. That benchmark also examined other degree and minor
programs. Recently, a survey was conducted of Software Develop-
ment skills (among hardware, professional, etc. skills) [4]. Those
skills include some overlap with the practices we examined; for
instance, "Do agile program design" is a subset of the Agile Processes
we examined. Generally, however, these practices are orthogonal
to their skills. There has also been recent analysis in how closely
general SE education aligns with industry trends [5], which found
similar, but smaller gaps between education and practice.

5 FUTUREWORK (FOR OUR COMMUNITY)
From these results, it is clear that the RSE research community needs
to engagewith robotics educators.We need to help them understand
the value of formal SE training for their students. This will require,
on top of research in best practice, research into pedagogy and
advocacy for the importance of our work.

ACKNOWLEDGMENTS
Thanks to our study programs for publishing their descriptions.

REFERENCES
[1] Mark Ardis, David Budgen, Gregory W Hislop, Jeff Offutt, Mark Sebern, and

Willem Visser. 2015. SE 2014: Curriculum guidelines for undergraduate degree
programs in software engineering. Computer 48, 11 (2015), 106–109.

[2] Bariş Ardiç, Irem Yurdakul, and Eray Tüzün. 2020. Creation of a Serious Game
for Teaching Code Review: An Experience Report. In 2020 IEEE 32nd Conference
on Software Engineering Education and Training (CSEE T). 1–5. https://doi.org/
10.1109/CSEET49119.2020.9206173

[3] María Cecilia Bastarrica, Daniel Perovich, and Maira Marques Samary. 2017.
What can students get from a software engineering capstone course?. In 2017
IEEE/ACM 39th International Conference on Software Engineering: Software Engi-
neering Education and Training Track (ICSE-SEET). IEEE, 137–145.

[4] Carlotta A. Berry, Michael A. Gennert, and Rebecca Marie Reck. 2020. Practi-
cal Skills for Students in Mechatronics and Robotics Education. ASEE annual
conference exposition proceedings (2020). https://par.nsf.gov/biblio/10184531

[5] Orges Cico, Letizia Jaccheri, Anh Nguyen-Duc, and He Zhang. 2021. Exploring
the intersection between software industry and Software Engineering education-
A systematic mapping of Software Engineering Trends. Journal of Systems and
Software 172 (2021), 110736.

[6] Joel M Esposito. 2017. The state of robotics education: Proposed goals for pos-
itively transforming robotics education at postsecondary institutions. IEEE
Robotics & Automation Magazine 24, 3 (2017), 157–164.

[7] Kim Fowler. 2004. Build versus buy. IEEE Instrumentation & Measurement
Magazine 7, 3 (2004), 67–73.

[8] Sergio García, Daniel Strüber, Davide Brugali, Thorsten Berger, and Patrizio
Pelliccione. 2020. Robotics software engineering: A perspective from the service
robotics domain. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 593–604.

[9] Michael A Gennert and Craig B Putnam. 2018. Robotics as an Undergraduate
Major: 10 Years’ Experience. In 2018 ASEE Annual Conference & Exposition.

[10] Ronald E Land. 2012. Engineering technologists are engineers. Journal of Engi-
neering Technology 29, 1 (2012), 32.

[11] Christoph Matthies, Johannes Huegle, Tobias Dürschmid, and Ralf Teusner. 2019.
Attitudes, beliefs, and development data concerning agile software development
practices. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET). IEEE, 158–169.

https://doi.org/10.1109/CSEET49119.2020.9206173
https://doi.org/10.1109/CSEET49119.2020.9206173
https://par.nsf.gov/biblio/10184531

	Abstract
	1 Introduction
	2 Method
	2.1 University programs studied
	2.2 SE Concepts Used in Robotics Development
	2.3 Evaluation of coursework

	3 Results and Discussion
	3.1 SE practices taught in robotics programs
	3.2 Under-emphasized Practices
	3.3 Capstone-style courses

	4 Related Work
	5 Future Work (for our community)
	Acknowledgments
	References

