
Introduction Skills for autonomous architecture Skill fault model and analysis process Case study Conclusion

A skill fault model for autonomous systems

Gabriela Catalán Medina 1,2 Jérémie Guiochet 1

Charles Lesire 2 Augustin Manecy 2

1LAAS CNRS, University of Toulouse, France

2ONERA/DTIS, University of Toulouse, France

4th International Workshop on Robotics Software Engineering, ROSE@ICSE

May 9th, 2022

J. Guiochet LAAS CNRS May 9th, 2022 1 / 12



Introduction Skills for autonomous architecture Skill fault model and analysis process Case study Conclusion

Introduction

Context
Autonomous systems and architecture : 3 layers

Problematic
Faults in autonomous architectures may occur at all
layers, usually managed with local treatment
How to specify consistent fault detection and
recovery mechanisms in such architecture?

Physical Environment

Autonomous System

Decisional layer

Executive layer

Reactive/Functional layer

Hardware

Objectives

J. Guiochet LAAS CNRS May 9th, 2022 2 / 12



Introduction Skills for autonomous architecture Skill fault model and analysis process Case study Conclusion

Introduction (2)

Our approach
Use a systematic approach for fault analysis
(model-based), and to specific recovery
mechanisms
Study how this detection and recovery mechanisms
can be implemented at the executive layer (skill
layer)

Our case study
Autonomous drone (DJI M600), Infrastructure
inspection Beyond Visual Line Of Sight (BVLOS)

Physical Environment

Autonomous System

Decisional layer

Executive layer

Reactive/Functional layer

Hardware

Objectives

J. Guiochet LAAS CNRS May 9th, 2022 3 / 12



Introduction Skills for autonomous architecture Skill fault model and analysis process Case study Conclusion

Skills > Overview Decisional Tree

Skills

Functional nodes

Skill 
model

User          

Skill 
implm.

Take-Off Land Goto

Skills
factory

Skill 
FSM

Skill layer converts plans sent by the decisional layer into
primitive services (skills) realized by the functional under layer
Skills are primitive services described by a skill model and a skill
implementation
Skill model and skill implementation are used to generate skill
managers for the skill layer
All skills share a same finite state machine (FSM), see next slide

J. Guiochet LAAS CNRS May 9th, 2022 4 / 12



Introduction Skills for autonomous architecture Skill fault model and analysis process Case study Conclusion

Skills > Skill FSM

S

NV

CR NR

RI
Rg

J. Guiochet LAAS CNRS May 9th, 2022 5 / 12



Introduction Skills for autonomous architecture Skill fault model and analysis process Case study Conclusion

Skills > Skill model example

A skill fault model for autonomous systems RoSE’22, May 9, 2022, Pi�sburgh, PA, USA

1 resource flight_status {
2 initial UNKNOWN
3 extern UNKNOWN -> ROTORS_NOT_READY
4 extern UNKNOWN -> ON_GROUND
5 extern UNKNOWN -> IN_AIR
6 extern ROTORS_NOT_READY -> ON_GROUND
7 extern ON_GROUND -> ROTORS_NOT_READY
8 extern ON_GROUND -> IN_AIR
9 extern IN_AIR -> ON_GROUND

10 }

Listing 1: Model of the flight_status resource using the DSL
proposed in [15]

callback (checking for example actual robot capabilities or safety
limitations), and if considered invalid, the skill execution is rejected
(�nal state NV). Otherwise, some resource preconditions de�ned by
the skill model are checked (state CR). Again, if these conditions are
not met, the skill execution is rejected (�nal state NR). Otherwise,
the execution is e�ectively started (transition dispatch calling
another user-de�ned callback – Rg stands for Running). During the
execution, some modelled invariants must hold. If an invariant is
violated, the skill execution is interrupted and ends in the RI state.
The skill execution can also be interrupted by the client (interrupt
transition – Ig stands for Interrupting). Finally, the skill can end
on a set of possible terminal states, or results, represented by the
states "8 (when result post-conditions are satis�ed) and "8 (when
post-conditions are not satis�ed). Some of these results can actually
be interpreted as failure modes of the skill.

S

NV

CR NR

RI
Rg

Figure 2: Skill FSM from [15]. Double circled states are ter-
minal states and rounded-boxes states have an entry e�ect.
Bold red labels correspond to transitions triggered from a
client. Italic green labels correspond to functions available
in the skill implementation part. Blue labels correspond to
automatic tests and e�ects.

Every skill can then be de�ned using the skills domain speci�c
language (DSL), that allows to specialize some parts of the skill
FSM. This is done by writting a skill-set model, using the skill DSL,
which allows to de�ne for each skill:

• its inputs, that are further passed to the FSM in the start
transition;

• its resource preconditions: to be executed, the skill requires
that some resource states meet these preconditions;

• its resource invariants: during execution, the skill requires
that these conditions on resource states hold;

• some e�ects on resources, that will change the resource
states either at the beginning of the execution (during the
dispatch transition) or at the end of the execution (when
reaching one of the "8 states);

• the possible results of the skills, i.e. the set of "8 states.
This speci�cation is called the skill model.

The UAV takeoff skill model is given in Listing 2. This skill

1 skill takeoff {
2 input {
3 height: float64 // validate can fail if h>h_geo_fence
4 speed: float64 // maximum ascending speed
5 }
6 effect {
7 take_control: axes_authority -> USED
8 release_control: axes_authority -> AVAILABLE
9 }

10 precondition {
11 sdk_authority: resource=(SDK_authority==AVAILABLE)
12 not_moving: resource=(axes_authority==AVAILABLE)
13 on_ground: resource=(flight_status==ON_GROUND)
14 home_valid: resource=(homepoint_status==VALID)
15 success take_control
16 }
17 invariant {
18 keep_sdk_authority: resource=(SDK_authority==AVAILABLE)

violation=release_controlõ!
19 in_control: resource=(axes_authority==USED)
20 }
21 result {
22 AT_ALTITUDE: apply=release_control
23 BLOCKED: apply=release_control
24 ABORTED: apply=release_control
25 }
26 }

Listing 2: Model of the takeoff skill using the DSL proposed
in [15]

has two inputs (lines 2 to 5): the height to reach when taking o�,
and the maximum allowed vertical speed. The takeo� precondi-
tions are: authorities must be available (SDK_authority is given by
the security tele-pilot – line 11 –, axes_authority by the skillset
manager – line 12), the UAV must be on ground (line 13) and the
home point must have been de�ned (line 14). In that case, the e�ect
applied on dispatch (line 15) is take_control, that asks to change
resource axes_authority to USED (line 7, to prevent other skills
to command simultaneous displacements). During the take o� exe-
cution, two invariants must hold: the axes_authority must still
be "owned" by the takeo� skill (line 19), and the tele-pilot should
not have taken back the manual control (line 18). Finally, three pos-
sible results are speci�ed, a nominal one, AT_ALTITUDE, when the

J. Guiochet LAAS CNRS May 9th, 2022 6 / 12



Introduction Skills for autonomous architecture Skill fault model and analysis process Case study Conclusion

Skill fault model pattern

J. Guiochet LAAS CNRS May 9th, 2022 7 / 12



Introduction Skills for autonomous architecture Skill fault model and analysis process Case study Conclusion

Skill Fault Analysis Process

1 Error analysis : list all the events (errors) that may impact correct
skill execution

2 Fault tree analysis : design skill fault tree based on the skill
fault model pattern. Connection of each event listed in (1) with
each skill fault tree,

3 Detection and recovery : determination of potential detection
mechanisms (DMi) and skill failure modes (FMi) for each branch
of the fault tree ;

4 Design/Verification : Design / Verify the skill model or
implementation to add or correct a missing or incomplete DMi or
FMi.

J. Guiochet LAAS CNRS May 9th, 2022 8 / 12



Introduction Skills for autonomous architecture Skill fault model and analysis process Case study Conclusion

Case study > Architecture overview

J. Guiochet LAAS CNRS May 9th, 2022 9 / 12



Introduction Skills for autonomous architecture Skill fault model and analysis process Case study Conclusion

Case study > Fault tree for Take-off skill

J. Guiochet LAAS CNRS May 9th, 2022 10 / 12



Introduction Skills for autonomous architecture Skill fault model and analysis process Case study Conclusion

Case study > Fault tree for Take-off skill

Next step is then to identify inconsistencies or unmanaged events in
the fault tree and to modify the skill model or skill implementation :

Identify errors can propagate up to top of the fault tree, i.e. lead
to a skill failure without being handled by a DM/FM mechanism
(e.g. modification of the skill model, see paper).
Errors of different nature could lead to the same failure modes of
the skill, but with different detection mechanisms.
Find redundant checks (DM) and optimize them

J. Guiochet LAAS CNRS May 9th, 2022 11 / 12



Introduction Skills for autonomous architecture Skill fault model and analysis process Case study Conclusion

Conclusion

Support for skill design and analysis to deal with detection and
recovery mechanisms
Generic and model-based (skill model + fault trees)

But only validated so far on drone applications and no we need
to evaluate how this really improve safety and availability at
system level

Current development : study how the fault tree can also be used
to generate test cases (to validate the detection and recovery
mechanisms)

J. Guiochet LAAS CNRS May 9th, 2022 12 / 12


	Introduction
	
	

	Skills for autonomous architecture
	
	
	

	Skill fault model and analysis process
	
	

	Case study
	
	

	Conclusion

