A skill fault model for autonomous systems

Gabriela Catalán Medina^{1,2} <u>Jérémie Guiochet</u>¹ Charles Lesire² Augustin Manecy²

¹LAAS CNRS, University of Toulouse, France

²ONERA/DTIS, University of Toulouse, France

4th International Workshop on Robotics Software Engineering, ROSE@ICSE

May 9th, 2022

Introduction

Context

Autonomous systems and architecture : 3 layers

Problematic

- Faults in autonomous architectures may occur at all layers, usually managed with local treatment
- How to specify consistent fault detection and recovery mechanisms in such architecture?

Introduction (2)

Our approach

- Use a systematic approach for fault analysis (model-based), and to specific recovery mechanisms
- Study how this detection and recovery mechanisms can be implemented at the executive layer (skill layer)

Our case study

 Autonomous drone (DJI M600), Infrastructure inspection Beyond Visual Line Of Sight (BVLOS)

- Skill layer converts plans sent by the decisional layer into primitive services (skills) realized by the functional under layer
- Skills are primitive services described by a skill model and a skill implementation
- Skill model and skill implementation are used to generate skill managers for the skill layer
- All skills share a same finite state machine (FSM), see next slide

Introduction	Skills for autonomous architecture ○●○	Skill fault model and analysis process	Case study ೦೦೦	Conclusion O		
Skills > Skill FSM						
	NV					
	valid					
	start $\rightarrow (S)$	$\rightarrow CR \xrightarrow{\text{pre}} NR$				
$(RI) \leftarrow (Iinvariant) (Iinvaria$						
	$terminate_{M_1}$	interrupt $terminate_{M_N}$				
		$(I_g) \longrightarrow (T_N)$				

 $\begin{array}{c|c} T_i & & I_g \\ \hline T_i & & & T_N \\ \hline post_{M_1} & & post_{M_N} \\ \hline effect_{M_1} & effect_{\overline{M_1}} \\ \hline M_1 & & & M_N \\ \hline \end{array} \begin{array}{c} effect_{M_N} & effect_{\overline{M_N}} \\ \hline M_N & & M_N \\ \hline \end{array}$

Skills > Skill model example

```
skill takeoff {
         input {
             height: float64 // validate can fail if h>h_geo_fence
             speed: float64 // maximum ascending speed
4
         effect {
6
             take_control: axes_authority -> USED
             release_control: axes_authority -> AVAILABLE
8
9
         precondition {
10
             sdk_authority: resource=(SDK_authority==AVAILABLE)
11
             not_moving: resource=(axes_authority==AVAILABLE)
12
             on_ground: resource=(flight_status==ON_GROUND)
13
             home valid: resource=(homepoint status==VALID)
14
             success take control
15
16
         invariant {
17
             keep_sdk_authority: resource=(SDK_authority==AVAILABLE)
18
             ↔ violation=release control
             in control: resource=(axes authority==USED)
19
20
         result {
21
             AT_ALTITUDE: apply=release_control
22
             BLOCKED: apply=release control
23
             ABORTED: apply=release_control
24
25
26
```


Skill Fault Analysis Process

- Error analysis : list all the events (errors) that may impact correct skill execution
- Fault tree analysis : design skill fault tree based on the skill fault model pattern. Connection of each event listed in (1) with each skill fault tree,
- 3 Detection and recovery : determination of potential detection mechanisms (DM_i) and skill failure modes (FM_i) for each branch of the fault tree;
- Design/Verification : Design / Verify the skill model or implementation to add or correct a missing or incomplete DM_i or FM_i.

Case study > Architecture overview

Case study > Fault tree for Take-off skill

Next step is then to identify inconsistencies or unmanaged events in the fault tree and to modify the skill model or skill implementation :

- Identify errors can propagate up to top of the fault tree, i.e. lead to a skill failure without being handled by a DM/FM mechanism (e.g. modification of the skill model, see paper).
- Errors of different nature could lead to the same failure modes of the skill, but with different detection mechanisms.
- Find redundant checks (DM) and optimize them

				Conclusion		
Conclusion						

Conclusion

- Support for skill design and analysis to deal with detection and recovery mechanisms
- Generic and model-based (skill model + fault trees)
- But only validated so far on drone applications and no we need to evaluate how this really improve safety and availability at system level
- Current development : study how the fault tree can also be used to generate test cases (to validate the detection and recovery mechanisms)