RoSE 2022 Workshop

Dynamic Allocation of Service Robot Resources to an Order Picking Task Considering Functional and Non-Functional Properties

Timo Blender, Christian Schlegel

The Fundamental Problem: Flexible Machines and Varying Tasks

The Context: Mastering the Software Engineering Challenge in Robotics

 \succ Business ecosystem for robotics based on separation of roles and on composition

Step-change towards a European ecosystem for open and sustainable industry-grade software development for robotics

https://robmosys.eu/

Reference: https://robmosys.eu/approach/

Reference: https://robmosys.eu/application/

Reference: https://robmosys.eu/application/

The Ideal: Synthesis in a Robotics Software Ecosystem (RSE)

 Automatic composition and configuration of available (software) building blocks from a marketplace to a customized, flexible robotic application based on a formal requirement specification of an user

- Enables deployment of requirement-related robotic applications
- Significant effort reduction of the associated development and configuration process

The Challenge: Managing Variability

The Approach: Dependency Variability Graphs (DVGs)

DVGs: Basics

- DVGs are a novel combination of different methods and structures:
 - Dependency graphs
 - Value trees
 - Decision trees
 - Constraint graphs
 - Function composition

This novel combination results in a generalized, more powerful expressiveness required to represent appropriate problem spaces in the context of a RSE

> DVGs are tailored to the boundary conditions of a RSE (composition, separation of roles)

DVGs: Modeling Patterns and Systems

Timo Blender

Implementation: Variability Management in a RSE by MDSD

- Realization of Variability Management in a RSE by
 - building block modeling
 - DVG system modeling
 - Generating solver code for DVG system resolution

THU

- \succ Order Picking task with variable requirements
 - Minimizing time or
 - Staying below a maximum time limit

We apply our general method for variability management to model and solve this problem!

- \succ Different robot resources available with different capabilities and properties
 - Can grasp objects or not, maximum velocity, current position, ...
- Different environment conditions
 - Layout of the warehouse

Which combination of available robots in which individual configuration is suitable for the current environment to fulfill the specified task requirements?

The Use Case of the Paper: Building Block and DVG System Model

Timo Blender

Experiment of the Use Case: Minimizing Time (3 Robot Candidates)

Table 3: Constant values in the example

Names	Values
NumberObjects FetchStation PickingPlace DeliverStation ^t DockToStation ^t LoadFromStation ^t UnloadToStation ^t UndockFromStation ^t DetectObjects ^t DockToRobot	5 (6.0, 7.0) (5.0, -10.0) (-3.0, 6.0) 3.0 2.0 2.0 2.0 10.0 5.0
$t_{Pick} \mid t_{Place}$	8.0 8.0

Table 1: Properties of our service robot candidates.

Robot	DockToStation	PickAndPlace	Max Vel.
Robotino	true	false	1200.0
Larry	false	true	1000.0
Macy	true	true	1000.0

Table 2: The possible task allocations in this example based on the available service robots (table 1).

Allocation	R^{S_T}	R^{S_M}	R^N
1	-	-	Macy
2	Robotino	Larry	-
3	Robotino	Macy	-
4	Macy	Larry	-

DVG solver determines the corresponding allocation for the current situation fulfilling the specified requirements

 Table 4: Varying start positions for the service robots in the different experiments

Experiment	Robotino	Larry	Macy
1	(-11.0, -14.0)	(3.0, 12.0)	(1.0, 1.0)
2	(1.0, 1.0)	(-2.0, -8.0)	(-11.0, -14.0)
3	(-11.0, -14.0)	(-2.0, -8.0)	(1.0, 1.0)

EUROPÄISCHE UNION Europäischer Fonds für regionale Entwicklung

Investition in Ihre Zukunft.

Baden-Württemberg