Towards flexible Runtime Monitoring Support for ROS-based Applications

Marco Stadler

Dept. of Business Informatics – Software Engineering Johannes Kepler University Linz, Austria

Michael Vierhauser

LIT Secure and Correct Systems Lab Johannes Kepler University Linz, Austria Jane Cleland-Huang Dept. of Computer Science and Engineering University of Notre Dame South Bend, USA

JOHANNES KEPLER UNIVERSITY LINZ

"[...] monitors be installed to **gather and analyze** pertinent **information** about the **system's run-time** environment [...] affect **adherence to requirements.**"

[Fickas and Feather 1996]

- Often requires significant upfront investment
- Monitors need to co-evolve with the system

Design and monitoring of CPS is recurring and crucial task in various domains

UAV search and rescue

. . .

Motivation - Runtime Monitoring for CPS

- Close interaction between Humans and Hardware
- ightarrow requires runtime monitoring of the robot behavior
- \rightarrow requires checking safety properties

The Problem I

The Problem II

- Reinventing the wheel for every new application
 - Collection of data
 - Subsequent analysis
 - Checking functional behavior and (safety) constraints

JYU JOHANNES KEPLER UNIVERSITY LINZ

- Open-source software development platform for robotics applications and systems
- Many modern (industrial) robotic apps rely on ROS
- Steered by variety of industry partners including Amazon, Apex.Al, Bosch, Microsoft, Intel...

1. Provision of initial system overview

2. Diversity and individual monitoring needs

3. Only subset of properties is likely to be monitored continuously

4. Adaptive monitoring

2022 | Marco Stadler

5. Constraint checks

6. Runtime monitoring visualization

 Design and deployment of a flexible and easily configurable monitoring framework for ROS-based systems

First prototype

Implemented Core-Features

Utilized Python ROS-bridge

Complete Implementation

Evaluation with different ROS systems

- Drones
- TurtleBots

Efficient Data Processing

Marco Stadler

Dept. of Business Informatics – Software Engineering Johannes Kepler University Linz marco.stadler@jku.at