Towards flexible Runtime Monitoring Support for ROS-based Applications

Marco Stadler
Dept. of Business Informatics – Software Engineering
Johannes Kepler University
Linz, Austria

Michael Vierhauser
LIT Secure and Correct Systems Lab
Johannes Kepler University
Linz, Austria

Jane Cleland-Huang
Dept. of Computer Science and Engineering
University of Notre Dame
South Bend, USA
Runtime Monitoring

“[…] monitors be installed to **gather and analyze** pertinent **information** about the **system's run-time** environment […] affect **adherence to requirements.**”

[Fickas and Feather 1996]

- Often requires significant upfront investment
- Monitors need to co-evolve with the system
Motivation - Runtime Monitoring for CPS

- Design and monitoring of CPS is recurring and crucial task in various domains
Motivation - Runtime Monitoring for CPS

- Close interaction between Humans and Hardware
 - requires runtime monitoring of the robot behavior
 - requires checking safety properties
The Problem I

[Images of various monitoring solutions, labeled Solution A, Solution B, Solution C]
The Problem II

- Reinventing the wheel for every new application
 - Collection of data
 - Subsequent analysis
 - Checking functional behavior and (safety) constraints
Scope: Robot Operating System

- Open-source software development platform for robotics applications and systems
- Many modern (industrial) robotic apps rely on ROS
- Steered by variety of industry partners including Amazon, Apex.AI, Bosch, Microsoft, Intel…
Approach

1. Identify challenges for providing effective monitoring support for ROS-based systems

2. Discuss requirements of such a monitoring framework

3. Implementation
Monitoring Challenges

1. Provision of initial system overview

- Height
- Battery
- Speed
- Distance
Monitoring Challenges

2. Diversity and individual monitoring needs
3. Only subset of properties is likely to be monitored continuously

```
turtlebot3_msgs/VersionInfo.msg

########################################
# Messages
########################################
string hardware  # .. : hardware version of Turtlebot3 (ex. 2021.05.23)
string firmware  # .. : firmware version of OpenCR
string software  # .. : software version of Turtlebot3 ROS packages
```
Monitoring Challenges

4. Adaptive monitoring
Monitoring Challenges

5. Constraint checks
Monitoring Challenges

6. Runtime monitoring visualization
Approach: Architecture Overview
Approach: Architecture Overview

System under Monitoring (SuM)

collect runtime data

define & select monitoring properties

User

configure & monitor system

Monitor Adaptation Manager

System Modeler

Runtime Model
evaluate constraints
store data

Constraint Engine

Data Persistence
Approach: Architecture Overview

System under Monitoring (SuM)

- Collect runtime data
- Define & select monitoring properties
- Configure & monitor system

Monitor Adaptation Manager

- Forward runtime data
- Manual & automated (re-)configuration

Runtime Model

- Generate

System Modeler

Runtime Dashboard

User

Constraint Engine

Data Persistence
Approach: Architecture Overview
Approach: Architecture Overview
Conclusion

▪ Design and deployment of a flexible and easily configurable monitoring framework for ROS-based systems

▪ First prototype
 ▫ Implemented Core-Features
 ▫ Utilized Python ROS-bridge
Next Steps

▪ Complete Implementation

▪ Evaluation with different ROS systems
 ▫ Drones
 ▫ TurtleBots

▪ Efficient Data Processing
Marco Stadler
Dept. of Business Informatics – Software Engineering
Johannes Kepler University Linz
marco.stadler@jku.at