On Structuring Energy-aware Sequence-control Software

Reynaldo Cobos Mendez, Eddo Hobert, Douwe Dresscher & Jan Broenink
Robotics and Mechatronics, University of Twente
Enschede, The Netherlands
OUTLINE

On Structuring Energy-aware Sequence-control Software

1. Introduction
2. Framework
3. Use case
4. Conclusions
1. Introduction

On Structuring Energy-aware Sequence-control software
Energy Awareness

- is associated to energy efficiency
- using energy information, e.g.,
 - as constraint for QoS
 - as metric for battery autonomy
INTRODUCTION

Using energy information

- is convenient in control design, e.g.,
 - for control stability
 - for fault tolerance
 - for robot safety
The communication between the software and the mechanics

- can be interpreted as energy exchange
 - iff the control signals contain information on:
 - forces and velocities
- this is already in use for loop control of robots.
A sequence controller

- produces a stream of setpoints for the loop controller
 - e.g., trajectories computed by a planner
- this can be interpreted as an energy supply
 - iff setpoints and feedback contain information on
 - forces and velocities
- this energy supply is implicit and can be unrestricted
An architecture

- accounting for the energy information
- making the energetic relations explicit and available
2. Framework

On Structuring Energy-aware Sequence-control software
Thinking in layers

- the sequence-control layer:
 - computes the sequence of robot movements
 - it may contain a trajectory planner
- the loop-control layer:
 - computes steering values
 - it contains the control-law algorithm
Energy-aware Sequence Controller (EaSC)

- communicates *setpoints* and *energy budget*
- the *energy budget* (Ebudget) represents:
 - the energy required to track the setpoint (SP)
 - the limited energy "supplied" by the planner
The EaSC also receives energy information

- gives insight on the physical interaction
- e.g., energy-budget consumption
 - i.e., energy-tank level (Etank)
Inside the EaSC

- a planner
 - computing the setpoint values

- an energy estimator (EE)
 - using models to generate the energy budget
 - this represents how much energy is needed
3. Use case
Simulation of mobile robotic platform

- Scenario 1
 - ground truth – i.e., ideal situation
 - EE parameters matching the physical system

- Scenario 2
 - higher friction than expected
 - EE parameters not matching the physical system
USE CASE

Situation 1 - ground truth

- Physical robot matching the robot-model* position

 * the robot model inside the energy estimator

- $E_{\text{tank}} \geq 0$

 - i.e., using energy within the budget
USE CASE

Situation 2 - higher friction

- Physical-robot **not matching** the robot-model position

- Only monitoring energy
 - planner takes no further action
 - results in $E_{tank} < 0$
 - i.e. **uses more energy** than the budgeted

- **Energy-aware** sequence-control action
 - planner decreases setpoint velocity
 - keeps energy consumption within budget
 - results in $E_{tank} \geq 0$
4. Conclusions

On Structuring Energy-aware Sequence-control software
CONCLUSIONS

This framework allows...

- structuring controllers to make decisions based on energy
- estimating the energy required for trajectories
- using energy information for better control behaviour
CONCLUSIONS

Further work

- extending energy awareness in the control structure
- communicating energy information across the system
- configuring and coordinating controllers based on energy
Thank you!

On Structuring Energy-aware Sequence-control Software