

University of Stuttgart

Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW)

RoSE: Software Architecture for DLO Manipulation: A Shape Manipulation Case Study

Soft Tissue Robotics

Manuel Zürn

Structure of this presentation

Mini structure in the corner

Motivation • Why focusing on research concerning deformable objects? • Why presenting a software architecture? Approach Problem formulation of shape manipulation • Components and design of the software architecture **Evaluation** Videos Conclusion

2

RoSE Software Architecture for DLO Manipulation: A Shape Manipulation Case Study | Manuel Zürn

© University of Stuttgart, ISW May 9, 2022

Potential for automation

Examples of intended use for DLOs

Stitching

Surgery

University of Stuttgart Germany

RoSE Software Architecture for DLO Manipulation: A Shape Manipulation Case Study | Manuel Zürn

Reason to present a software architecture

Paper evaluation by search term

306 papers related to deformable object manipulation

RoSE Software Architecture for DLO Manipulation: A Shape Manipulation Case Study | Manuel Zürn

Shape manipulation

From problem formulation to a program flow chart

RoSE Software Architecture for DLO Manipulation: A Shape Manipulation Case Study | Manuel Zürn

Software Architecture used for DLO manipulation

Three layer approach

Decision Layer

• Used for skill planning

Skill Layer

Modularizing different skills

Functional Layer

6

Hardware/Library abstraction

Three layer software architecture

7

Evaluation

Skill verification and validation

RoSE Software Architecture for DLO Manipulation: A Shape Manipulation Case Study | Manuel Zürn

8

Evaluation

User defined shape validation

RoSE Software Architecture for DLO Manipulation: A Shape Manipulation Case Study | Manuel Zürn

9

Conclusion and outlook

Conclusion

- · Modularized layered approach allows for
 - Switching decision layers for different application
 scenarios
 - Switching specific algorithms for comparison
 - Interchangeable components, e.g. different simulation software
- Outlook
 - Comparison of different non-rigid-registration
 algorithms
 - Implement further skills, e.g. advanced task planning using predicted states of the deformable objects

Sources

11

[1] https://www.assemblymag.com/articles/95406-monitoring-activity-during-wire-harness-assembly?

[2] Yili Qin et al. Cable Installation by a Humanoid Integrating Dual-Arm Manipulation and Walking 2019

[3] https://www.assemblymag.com/articles/93476-handling-high-mix-harness-assembly

[4] https://www.ehb-electronics.de/en/products/switch-cabinet-construction

[5] BorisGuiu et al. Feasibility, safety and accuracy of a CT-guided robotic assistance for percutaneous needle placement in a swine liver model.

[6] https://www.aboutkidshealth.ca/cvl

[7] Chandan Kundavaram et al. Advances in Robotic Vena Cava Tumor Thrombectomy: Intracaval Balloon Occlusion, Patch Grafting, and Vena Cavoscopy.

[8] https://www.standard.co.uk/tech/robot-surgeons-watched-videos-to-learn-stitches-a4471776.html

Thank you!

Manuel Zürn

Research Assistant

email Manuel.zuern@isw.uni-stuttgart.de

phone +49 (0) 711 685-82423

fax +49 (0) 711 685-

University of Stuttgart Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW) Seidenstrasse 36 • 70174 Stuttgart • Germany