
Getting Started with ROS2 Development:
A Case Study of Software Development Challenges

Paulius Daubaris, Simo Linkola, Anna Kantosalo and Niko Mäkitalo
Department of Computer Science

University of Helsinki
Helsinki, Finland

first.last@helsinki.fi

Abstract—ROS2 has started to gain attention from the industry
as it fosters robot software development. Companies seek to use
ROS2 in real products, thus increasing the need for ROS2-related
skills. We investigate what kind of challenges junior software
developers – i.e. computer science majors on one of their last
B.Sc study modules – encounter when learning robotics using
ROS2. We conduct a case study with a group of five students
with a project goal to develop a robotic application utilizing
an agile software development process. We inquire about the
challenges after the project using semi-structured interviews. By
analyzing the interviews we identified 87 development challenge
instances that can be roughly divided into challenges caused
by insufficient or misinterpreted documentation and challenges
encountered during the development process or usage of ROS2
and its packages. Hence, based on the results, we suggest that
the ROS2 community should invest in an integrated resource
to help with ROS2 development and patch up the currently
fragmented documentation of individual packages in order for
it to be adopted more easily as a technology by junior software
developers.

Index Terms—robot operating system, ROS, ROS2, software
engineering

I. INTRODUCTION

Developing robot software from scratch is a demanding
task. Real industry-level applications are complex and ex-
pensive to develop, yet robots are increasingly applied to
various real-world scenarios [9, 7, 12]. To alleviate the in-
herent complexity of the domain, Robot Operating System
(ROS) and ROS2 [e.g. 11] emerged as technologies facilitating
robot software development by providing an architecture, core
technologies (e.g., messaging), as well as an open community
for sharing software components with others. Therefore, ROS2
has started to get attention from the industry, and at the
moment many are seeking to use it in real products. However,
finding ROS2 developers may be challenging. Moreover, con-
sidering the nature of the robotics domain, junior developers
are expected to encounter a steep learning curve that can
make the learning process difficult. Hence, in this paper, our
motivation is to study the challenges which developers might
face when getting started with ROS2.

Robotics is a multidisciplinary field encompassing electrical
engineering, mechatronics, electronics, mathematics and soft-
ware engineering [10]. Learning to effectively work in such a
multidisciplinary field poses various challenges for people with
different skills and background knowledge. That is, to build

robotic systems the developers need to cooperate with special-
ists from different fields or to maintain knowledge of multiple
domains [13]. Fortunately, ROS and its successor ROS2 – a
widely used technology to develop robot software [9, 3, 2] –
attempt to reduce the identified knowledge gap. Nonetheless,
entering a new domain can be challenging, especially for
junior software developers.

In this paper, we provide a case study of a group of
(junior) software developers learning robotics using ROS2 in
a seven-week software development project. In other words,
a group of computer science B.Sc students with varying
backgrounds form a developer team to design and implement
an autonomous mapping robot on the top of Turtlebot3 Burger
platform per the client’s requirements.

Our goal is to shed light on the most prominent challenges
the computer science majors had when learning the robotics
domain in a problem-solving style where they were required
to build a full application satisfying specific requirements
with no ready-made, complete solutions in hand – a typical
situation in nearly any software development project. We focus
on the technical development challenges dealing with ROS2
and its packages, which are caused by various reasons such
as insufficient or missing documentation. We do not consider
pedagogical issues, such as how to best introduce and teach
robotics to computer science students.

We base our findings on interviews of a single student group
(N=5) working on a single project. Each student kept a devel-
opment diary during the course to reflect on the development
process and the semi-structured interviews were held after the
final software was delivered. The interviews were processed by
transcribing them and the transcripts were encoded in multiple
iterations to support thematic analysis. The coded transcripts
were then analyzed and reoccurring topics identified.

The paper is structured as follows. In Section II, we intro-
duce the motivation for this paper, related work and context
of our case study, the robotics project. In Section III, we
explain how the research was conducted and what methods
we used to gather the necessary data. We present the results
and insights in Section IV. After considering the results, we
introduce threats to validity in Section V, following which, we
discuss our findings in Section VI and conclude the paper in
Section VII.



II. BACKGROUND AND MOTIVATION

This section covers the motivation, related work and the
robotics project the students set out to design and implement.

A. Motivation

The open source robotics middleware ROS has become a
widely adopted technology in the robotics domain. It has cre-
ated the opportunity for its users to rapidly prototype systems
with pre-built packages conforming to specific functionali-
ties [6]. Its successor, ROS2, has surfaced as a new emerging
technology and a solution to its predecessor’s shortcomings
(e.g., single point of failure, security) [11].

Beyond minor changes and improvements, the main changes
adopted by ROS2 include the new communication standard,
the Data Distribution Service (DDS), which relieves systems
from the single point of failure (i.e. the removal of the master
node) inherent in the initial ROS version. The DDS also
seeks to improve the security by providing built-in protection
mechanisms and reliability due to its ability to operate in en-
vironments where network quality might be problematic [11].

Having two versions of the same technology, however,
can have negative effects in the long term. For example, a
vast array of knowledge has accumulated for ROS, some of
which might not be relevant to ROS2. Expiring knowledge
might not be an issue on its own, however, considering the
differences and the prevalence of ROS, it might make it
difficult for developers of varying expertise to find solutions
to the similar challenges encountered with ROS2. Moreover,
while the official source code of both technologies might be
actively maintained, the same cannot be said for the package
ecosystem [3]. Packages can be created by anyone without
any maintenance obligations. Therefore, if a package has been
assembled for, for example, the initial version of ROS, there
are no guarantees that it will be updated for the succeeding
version. Therefore, if the needed functionality is unavailable,
it can lead to burdensome development, where the solution
might need to be rewritten entirely or adjusted to fit the new
requirements of ROS2.

Given these circumstances, we see the need to investigate
learning experiences with ROS2, especially regarding junior
developers. We consider that due to the rising need for robotic
developers, we need to investigate the challenges especially
junior developers face with adopting ROS2.

B. Related Work

ROS development challenges have been studied before. A
similar study has been conducted where researchers with no
background in ROS attempted to learn the technology using
a five day paid course – “ROS Basics in 5 Days (Python)”
by The Construction Sim1 and recorded their experiences [1].
The authors identified issues ranging from documentation
and development (e.g., ambiguous error messages) to how
ROS abstractions prevent understanding the domain. Our work
differs from the study by Canelas [1] in the duration of the

1https://app.theconstructsim.com

learning, nature of the project, as well as the target technology.
Although the authors do no explicitly mention the duration of
their learning study, the name of the course implies that it
is supposed to run for less than a week, while our project
course ran for seven weeks. Regarding the nature of the
project, the referenced study used multiple robots within a
simulated environment. Our study, on the other hand, provided
students with actual hardware to work with, thus, potentially
expanding the surface of bottlenecks and challenges that could
be encountered during the development. With consideration of
the technology, we focused on ROS2, while the authors of the
former study were investigating learning challenges related to
its predecessor.

Estefo et al. [3], focused on a particular aspect of the
ROS ecosystem – packages. They conducted interviews, focus-
group interviews and online surveys to investigate the matter.
The study included participants of varying expertise in ROS
and examined experiences related to the package reuse. The re-
searchers found that ROS package ecosystem has considerable
shortcomings (e.g., lacking documentation, abandoned pack-
ages), which can significantly impact the usefulness and the
perceived strength of the technology and provided recommen-
dations on how the identified issues could be mitigated. With
regard to the less experienced developers, it was noted that
juniors were troubled by third-party packages and, specifically,
their reuse due to various issues (e.g., a package being outdated
or inability to understand how it works due to documentation).

Fischer-Nielsen et al. [4] investigated the case dependency
bugs (e.g., a resource such as a data file being unavailable
when needed) in the ROS ecosystem, reported their prevalence
and highlighted challenges related to them. Although investi-
gating challenges relevant to junior developers was not the core
interest of the study, researchers indicated that dependency
bugs indeed do pose challenges to the junior developers.

C. Robotics Project
In this section we provide an overview of the goals of the

seven-week robotics project (10 ECTS credits) and the final
software delivered to the clients (the writers of the paper).
While the exact software requirements or the final software
are not the focus of the paper, they help contextualizing our
findings on the development challenges.

1) Description and Requirements: The goal of the project
was to develop a ROS2-based application for Turtlebot3
Burger robots2. Turtlebot3 Burger is a low-cost hobby robot
with a differential drive (two wheels that can be controlled
separately and a balancing, freely rotating ball). The main
components of the robot include: Raspberry Pi 3 Model B for
the OS and software; OpenCR (Open-source Control Module
for ROS) for the wheel motors and other possible sensors and
actuators; and a 2D lidar. Additionally, for computer vision
purposes, we included Raspberry Pi Camera Module V2 to
each robot. Figure 1 shows a single-robot setup.

The high level functional requirements for the robotics
application were the following:

2https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/



Fig. 1: A single Turtlebot3 Burger with an additional camera.

R1 The robot must autonomously explore its surroundings
and form an internal map of the environment using the
2D lidar and a Simultaneous Localisation and Mapping
(SLAM) implementation.

R2 The robot must be able to detect QR codes using its
camera while exploring, and keep a database of seen
QR codes and their locations with respect to the robot’s
internal map (see R1). The database must be kept up-to-
date even if QR code locations move in the environment.

R3 The robot must stop its exploration and navigate next to
a specific QR code (see R2) when instructed to do so
by an external API call.

These three high level requirements were then broken down
to more specific requirements and technical implementation
details during the project. The use of existing resources, e.g.
for SLAM, was highly recommended. Moreover, the robotics
domain imposed some restrictions or guidelines for the devel-
opment process. For example, even though the application was
only required to work on the physical robots, we incentivised
the students to use the Gazebo3 simulation environment with
an existing virtual implementation of the Turtlebot3 Burger
for quicker development cycles.

The students were instructed to separate the main func-
tionalities (navigation and SLAM, camera, and database) into
their own ROS2 nodes, however, the exact architecture was
left for the students to design and implement. Both ROS2
and Turtlebot3 were unfamiliar to the students. However, 4
out of 5 students had previous experience either directly with
Raspberry Pis or with similar single-board computers.

3https://gazebosim.org/

2) Progress and Final Results: The students met with the
client almost weekly during the project. In the conversational
meetings, the client provided requirements for the software
and their priorities, and the student team, with the help of
their supervisor, then internally decided how to proceed with
those requirements. In the successive meetings, the students
showcased their progress and the client approved it, requested
changes to the existing solutions, or adjusted the requirements.

The final result of the robotics project was a piece of
software which worked both on the Gazebo simulator and
the physical Turtlebot3. The software satisfied the three main
requirements (R1–3) to an appropriate degree – although
there were some known minor bugs left when the application
was run on a physical robot – and followed our suggestion
for the high-level architecture that separated SLAM, camera
functionality and the database to their own nodes. The exact
inner working of the nodes and their combined functionality
was designed by the students during the project as we provided
increasingly more specific requirement adjustments. While the
final software ended up using only a few pre-built third-party
ROS2 packages (Nav24, Cartographer5) and integrated some
general Python packages such as opencv-python6, the students
explored many more options during the project.

III. RESEARCH METHOD

A. Interview Setup

To gather information about ROS2 development challenges
from multiple angles after the project, we opted the semi-
structured interviews to include selected themes. We first
defined the general categories and then formed questions for
each category, both of which are shown in Table I. We inter-
viewed each student developer (referred to as Student 1–5 from
now on) separately. We did not include the group supervisor
because he did not participate in the hands-on development of
the project. In case the student’s answer was unclear initially,
we asked for clarification or presented our interpretation of
the answer and asked whether it was correct. Each interview
was held in English and lasted roughly 20-30 minutes. The
interviews were recorded and manually transcribed.

B. Data Analysis

The interview analysis was based on an open coding pro-
cess [8] using an emergent categorization based on the topics
discussed in the transcripts. The initial codes were acquired
while reading the interviews and later refined by discussing
and reviewing the existing set with the other authors of the
paper in recurring meetings, repeating the process in multiple
iterations. After a few iterations of coding, we decided to
add categories and model a hierarchy that would enable us
to distinguish common patterns among the responses. Mainly,
we focused on identifying the challenges students had while
developing the project using ROS2, which the codes aim to

4https://github.com/ros-planning/navigation2
5https://github.com/ros2/cartographer/tree/ros2/
6https://pypi.org/project/opencv-python/



TABLE I: A set of predefined interview questions

Category Question
Background Do you have any experience working on open source projects?

Do you have any prior experience working with robot software?
What was your role during the development of the project?
Walk us through what was your robot development experience using ROS 2?

ROS2 as a concept Could you explain ROS2 in your own words?
Was it hard to understand the idea of ROS2 (e.g., what it is meant for)

ROS2 development What concepts of ROS2 were hard/easy to grasp?
What development bottlenecks have you encountered?
What ROS2 feature did stand out the most during the project development?

ROS2 packages Describe what was your experience while using ROS2 third-party packages?
Did you encounter any difficulties when using a particular package?
Were the packages sufficiently documented?
Were the packages hard to integrate into the project?
Were the packages easy to configure?

Documentation How would you evaluate the documentation of ROS2?
Was the information provided in the documentation sufficient for you to confidently start developing the project?
Based on your experience during the project, what information do you think was missing from the documentation?
Do you think the information provided in the documentation is easy to grasp?

Project and other What was difficult to implement considering all the facilities that ROS2 offers (e.g., DDS for communication)?
After the project course, would you feel comfortable using ROS2 for other robotic applications?
Do you have any idea of how else you would implement the project?

reflect. In the end, we settled upon a total of 14 codes in three
levels of hierarchy. Next, we elaborate on the findings.

IV. RESULTS AND ANALYSIS

The results presented in this section describe the develop-
ment challenge instances extracted from the interview tran-
scripts. Our codes are organized into a three-level hierarchy,
where the two interchangeable top levels identify whether the
challenge instance was related to ROS2 core or ROS2 packages
and if it was a development & usage or documentation issue.
The third level denotes the concrete challenge. Figure 2 shows
the groupings and the identified challenge instance counts.

ROS2 core relates only to the core features of ROS2 and
its documentation without the inclusion of external, third-
party code libraries and/or packages and their documenta-
tion provided by its ecosystem. ROS2 package challenges
are limited to the shortcomings of the third-party packages
and their documentation. Development & usage refers to the
challenges encountered when directly using the technology
and documentation when searching for information about it.

The third level codes denoting a specific challenge are the
following. Lacking information identifies insufficient informa-
tion provided in the documentation or other resource (e.g.,
online forums). Issues related to the ROS2 versioning scheme
have been applied to the versioning code. The hard to under-
stand code expresses confusion and lack of intuitiveness when
using ROS2 and/or applying its packages. A less frequent
code, such as simulation vs. physical, expresses issues related
to the inconsistent behavior of the system when applied in
simulation and in a physical setting, whereas inconsistent build
results identify non-deterministic outputs when building the

system. The hardware code encompasses issues encountered
when applying hardware to the system and integration indi-
cates difficulties encountered when integrating, for example, a
package. The copy-paste code embodies cases where students
expressed shortcomings of the learning experience due to
full examples provided that could be copied without the
need to understand them. Regarding the experiences, lack
of experience code indicates challenges where students felt
the issue was related to their lack of experience with the
ROS2 ecosystem rather than the ecosystem itself. Lastly,
the unidentified code represents issues that were given no
explanation during the interviews. For example “We had lots
of different errors or problems when working with the Nav2
[package]” (Student 1).

Next, we consider the most prominent qualitative results of
our case study.

A. ROS2 Core

1) Documentation: In general, when asked to assess ROS2
documentation, the majority of students evaluated it as very
well-written: “the documentation on its own is so, so very
decent” (Student 1). Nonetheless, besides praises, students that
focused on the development of the project reported a shortage
of tutorials on more practical aspects of the technology: “I
didn’t find anything [about] tests. So, to create [them], I had
to figure out how to do it on my own, and it was pretty
hard, and I was unsure if it was the correct way to do it”
(Student 2). Otherwise, one student compared existing ROS2
tutorials provided on the official ROS2 website and described
some as being less intuitive than the others: “I did start looking
into the services and the topics and I noticed that those were ...



documentation (51)

development & usage (36)

lacking information (23)

hard to understand (13)

versioning (10)

copy-paste (5)

unidentified (17)

sim
ulation versus physical (5)

inconsistent build results (3)

integration challenges (3)

hard to understand (2)

hardware (2)

lack of experience (2)

versioning (2)

(a)

Core (45)

Packages (42)

Development 
& usage (18)

Documentation (27)

Development 
& usage (18)

Documentation (24)

Inconsistent build results (2)

Lack of experience (2)

Hardware (2)

Simulation versus physical (3)

Unidentified (8)

Hard to understand (7)

Hard to understand (1)

Copy-paste (5)

Lacking information (10)

Versioning (5)

Hard to understand (6)

Lacking information (13)

Versioning (5)

Inconsistent build results (1)

Versioning (2)

Integration challenges (3)

Simulation versus physical (2)

Unidentified (9)

Hard to understand (1)

(b)

Fig. 2: Groupings of the 87 identified development challenge instances: (a) on the left the main division is between the challenge
instances in the development & usage and documentation, and (b) on the right between the challenge instances in ROS2 Core
and ROS2 Packages.

much more complicated than the simple publisher, subscriber
one” (Student 3). “Well, the topics and services were easy to
grasp, but [for] the last type of communication, I was unsure
how to use [it], and we did not use it in the project. Also, in
the code, calling the services was pretty unintuitive and was
not as easy as just calling some sort of function. It was a bit
more complicated and quite annoying” (Student 2).

Upon asking whether the information provided was suffi-
cient for project development, students argued that a tutorial
showing how to connect prior knowledge would have been
beneficial: “my biggest complaint is that there’s no bigger
project example or any example where there are multiple
nodes and how they work together” (Student 4). “I had some
difficulties on how [to] make something bigger ... I would have
liked to see more intermediate tutorials” (Student 3).

When discussing documentation, a few students identified
the learning process to be difficult since the tutorials provided
complete examples that could be copied: “[Y]ou can get the
initial stuff, but it was pretty much copying general commands
from the basic tutorials ..., you didn’t really understand what
was going on” (Student 5). “The ROS2 tutorials were like
‘yeah, just copy-paste this code, and then we will quickly [go]
through the code and move on. And also we will just copy and
paste these terminal commands and go on’. Well, you did not

learn there much” (Student 2).
Although the documentation has been identified as well-

written, based on the feedback received from all five students,
we observe that junior software developers still encounter
difficulties when trying to apply new knowledge.

Observation 1. ROS2 documentation is highly approachable
to new users. However, some relevant documentation is miss-
ing, while existing code examples are not thought-provoking.
It remains difficult to connect the knowledge acquired from
the documentation and apply it to build a larger project
encompassing the concepts described in the content without
a proper example.

2) Development in Simulation vs. Physical: Besides docu-
mentation issues, we expected students to encounter devel-
opment bottlenecks throughout the project. When asked to
identify them, the students reported inconsistencies between
the simulation and the physical environment: “[E]verything
works differently on a physical robot than in the simulation.
It’s really fast to do things in the simulation, but when we
try to run it on a physical robot, we get different results”
(Student 4). “The implementation was pretty easy [when]
working within the simulation, but we constantly ran into
trouble trying to get things [to work] on a physical robot. That



was the biggest single hurdle and that occurred constantly
throughout the project” (Student 5). “Some nodes worked
differently in the Gazebo simulator in comparison to the actual
robot” (Student 2).

Although most students did not elaborate on what caused the
different outcomes in these two environments, one identified
that a part of the system was not working due to the lacking
documentation in the Nav2 package: “In Foxy [version of
Nav2], there were no API commands, and it was difficult
to understand which launch files to use ... because [they]
were not documented ... and accidentally, we were using the
wrong launch file for SLAM for the physical robot because
it’s different [for] physical and simulation. It cost us a lot of
hours.” (Student 4).

Not all the participants encountered this issue. However,
it is mainly because Student 3 took on the managerial role,
while Student 1 developed nodes and concentrated on the
presentation aspects of the project. This leads us to the
following observation.

Observation 2. Developing a system using a simulator is
quick and convenient. However, it is probable to encounter
issues when deploying the code onto the physical hardware,
even when the system appeared to work in the simulation.

3) ROS versioning: Project participants reported the ver-
sioning aspect made development difficult. “Some of the de-
velopment bottlenecks were that some of the [packages] were
lacking documentation or the tutorials were for ROS or an
older or newer ROS2 version or they did not have something
that we would have liked them to have” (Student 2). When
evaluating the documentation of ROS2, some students, based
on the development experience, hypothesized that it would
have been easier to work with the initial ROS version “My
answer would probably be different if we did this with ROS1.
I felt like we would have a generally fairly good amount
of documentation, and there was already such an amount of
information online, people dealing with different stuff and so
on, but with ROS2 – no” (Student 5). One student identified
ROS2 as a confusing platform. When asked to elaborate, they
explained that the confusion was caused by many different
distributions of ROS2: “I think [it was confusing] mostly
because there were so many versions of ROS2. For example,
there is the Foxy one [that] we used, but then there [are]
also 10 other bigger updates... And also because there is
ROS. When you [search] for some problem, you might find
the solution, but it probably won’t be for the [distribution]
you are using at that moment. The solutions ... spread across
all the versions of the software. I felt that was a big issue.”
(Student 1).

Besides that, ROS2 versioning made it difficult to use
certain packages because it was unclear for which ROS version
or distribution it was made for: “[W]hen we first started to get
the camera working, we used ... V4L2 [package], and it was
not that good, it did not work. It was also made for maybe
some other version of ROS2 or other distribution” (Student 1).

More than half of the participants reported development

hardships caused by the ROS versioning scheme. We ob-
serve that such a scheme can often make the solutions to
the previously encountered problems obsolete and make the
development burdensome.

Observation 3. Multiple distributions and versions of ROS
can negatively impact the development process due to the
expiration of the accumulated knowledge caused by the
release of new versions of the technology.

B. ROS2 Packages

1) Documentation: The students described difficulties
while using ROS2 packages, many of which were related to
their documentation. Since students used only a few packages,
many answers identified shortcomings of a particular package.
For example, a package such as Nav2 was both praised and
criticized. The praise came mainly from students who did not
work on the navigation part of the project. We did not ask how
they came up with the conclusion, however, we speculate that
those participants had only a brief encounter with its docu-
mentation and prematurely assumed it was sufficient for their
use case. However, those students who did work with Nav2 or
other ready-made packages mentioned that the documentation
was insufficient: “Nav2 documentation [is] bad at telling
which part does what”. (Student 5). “Some of the development
bottlenecks were that some of the preexisting [packages]
were lacking documentation” (Student 2). “In the beginning,
we mostly used pre-made [packages] that ... somebody has
been developing and has been nice enough to publish, but
sometimes the documentation was non-existent.” (Student 3).
Even when it was sufficient to begin the development, some
packages had relevant information missing: “Nav2 was well
documented, but it did not mention any of the errors that we
got” (Student 2).

A few cases reported by a couple of students mention that
the developers of some packages omitted details beneficial to
a junior, such as the information on basic usage: “Sometimes
it was very difficult to get [packages] working, I had an
experience where one package said, basically to paraphrase
... ’start it like you normally would’. And [I], of course, I don’t
know how to normally start [it].” (Student 3). Or the concepts
behind the package: “[An issue during the development was]
to understand the role of Nav2 and SLAM and the combination
of how they work together. What’s the starting point?” (Student
4). Moreover, when asked whether it was difficult to integrate
a package due to lacking documentation: “I think that was the
hard part. Not really knowing how to or through what API to
use them” (Student 1).

Based on the feedback received from all students, ROS2
package documentation that was used in the project appeared
to be a significant bottleneck during the development. It
assumed a degree of expertise and omitted information relevant
to junior software developers.



Observation 4. Some ROS2 package documentation does
not live up to the same standards as ROS2 documentation.
Students identified that it is either lacking or non-existent.
Moreover, even if a package is well-documented, it may omit
details that matter to junior developers.

2) Usage: Besides documentation issues, ROS2 package
usage has caused some frustration as well. Mainly, students
encountered packages that did not work properly or did not
understand how to use them. A commonly identified pattern
was to spend time trying to understand what went wrong and
then fallback to re-implementing the package or some of its
functionality from scratch if feasible: “We got [the explorer
package] working and it explored the entire area, but then it
stopped, and we somehow had to figure out how to make it
continue moving, but in the end, we could not do that and
had to write our own node” (Student 2). “We had to adjust
our own program because we did not really understand how it
worked ... and in the end, we had to just make our own camera
node, we could not get it [to work] properly” (Student 1).
Nonetheless, one student described the issue as not necessarily
being the package but the lack of experience: “My experience
was that there were ... a lot of useful packages, but with my
knowledge, I could not get them to work the way that I needed
them to work.” (Student 3).

When asked about the difficulties of using a particular pack-
age, one student mentioned that it was difficult to understand
how to build a package properly: “To get the video working in
order to read the QR codes ... [we had to use a] package called
V4L2. ... to get it working, I think there were four different
things I had to pull from Git and users dependencies. ... All
the instructions I had found ... had slight differences and in
the end, I had to look up about four different tutorials and
combine them in a way that I finally got them to work on
our device ... And also when building and starting the node
it threw a lot of error messages and at first, I thought, I must
get rid of the error messages for it to work properly, and I
spent about two hours on that when I finally realized that,
[instead], I will try it with the error messages and everything
worked perfectly. So, I think that was [difficult] for me to find
out how to build it properly, so it actually works and then
ignore non-relevant error messages.” (Student 3).

Students working with third-party packages experienced the
development process to be difficult to such a degree that they
had to rewrite specific functionality by themselves to advance
the project further.

Observation 5. Some ROS2 packages are difficult to use
due to lacking accessibility, which can significantly delay
development advances.

V. THREATS TO VALIDITY

The main threat to the case study validity is the small sample
size of five students working in the same group.

The students worked on the same project throughout the
whole course. It was expected they would share ideas and their

progress, discuss different tasks, and explain concepts behind
ROS2 or its packages to one another. In a general sense, such
collaboration is welcome. However, there is a risk that one
student’s experience shared with another could have skewed
their perceived difficulties.

Considering the course itself, clients gave feedback and var-
ious instructions to the students. For example, we pointed what
are the most commonly used packages that might be useful for
them. Such input could have affected the general development
process and, ultimately, the difficulties they encountered.

Another aspect is that the students used only a few packages
during the project. Such circumstances prevent us from making
definitive conclusions implying that the identified shortcom-
ings apply to all ROS2 packages.

VI. DISCUSSION

ROS2 and its ecosystem ease the development process and
enable novice users to understand the underlying concepts of
the technology and to rapidly construct robotic systems by
leveraging third-party packages. However, several disadvan-
tages persist. The findings presented in this paper indicate that
there are multiple pain points regarding learning ROS2 related
to its core and the packages.

With regard to the used ROS2 packages, mainly two topics
were reoccurring: package documentation and their usage.
Students identified the state of package documentation to
be less polished than the official ROS2 documentation –
often lacking or non-existent and also assuming a degree of
expertise, thus omitting details relevant to the newcomers.
Such aspects made the packages difficult to understand and
use. However, because the participants used only a handful
of third-party packages, these claims cannot be applied to the
whole package ecosystem. Nonetheless, differently than with
ROS2 core documentation, we see overlapping ideas in the
related work (see e.g., [3]), where beginner users identified
similar issues such as lacking documentation (Observation 4)
or failure when attempting to reuse a package (Observation 5);
or packages being outdated [5]. Considering the study has been
conducted in 2019, it appears that the issue is still relevant and
there is room for improvement. Although ROS accessibility
issues have been acknowledged in several previous studies [6,
7], we identified that ROS2 core documentation was mostly
sufficient (Observation 1), but the package documentation
was in many cases scattered or insufficient (Observation 4).
The latter observation is also backed up by the work of
Canelas et al. [1], where the authors argue that the technology
could benefit from improved documentation. In addition, the
versioning scheme of ROS2 adds additional complexity to
new adopters as finding the appropriate ROS2 distribution to
work with may require its own exploration. However, definitive
conclusions cannot be made because, to our knowledge, only
a handful of studies exist that evaluate the accessibility of
ROS2 and, more concretely, its documentation. Therefore, the
conducted study should be expanded to verify the reliability
of the presented results regarding the current state of ROS2
accessibility to novice users.



VII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated ROS2-based software de-
velopment challenges encountered by junior developers that
have no experience in robot software development. After a
seven-week software development project we conducted semi-
structured interviews with each member of the developer team.
During the analysis of the interview data, we distinguished
issues related to two main categories: ROS2 core and ROS2
packages. ROS2 core relates only to the core features of ROS2
and its documentation without the inclusion of external, third-
party code libraries and/or packages and their documentation
provided by its ecosystem. ROS2 package challenges are
limited to the shortcomings of the third-party packages and
their documentation.

The results indicate that considering all the amenities
ROS2 and its ecosystem provides, junior developers remain
to encounter hardships that require them to seek answers
elsewhere rather than the official documentation, rewrite code
that is poorly documented or is difficult to integrate and
seek alternatives and workarounds when no clear solution
exists to the encountered issues. We draw the conclusion that
while ROS2 makes robot development more approachable to
the developers, the varying levels of package documentation
and versioning-related problems decrease the accessibility for
junior developers. As a result, we suggest (1) improving
the documentation by developing an integrated resource to
help with ROS2 development and the currently fragmented
documentation of individual packages, and (2) standardizing
the documentation process and providing best practices that
package creators could follow. Nonetheless, definitive claims
cannot be made and an expanded study should be conducted
to see how well the results generalise.

For future work, we see the possibility to investigate the
listed difficulties in more detail and consider how these short-
comings could be alleviated, thus improving the development
process, especially for novice users. We also seek to put ROS2
into a broader context by conducting a more elaborate study
regarding its technological maturity in the industrial context.

Acknowledgments

This work was supported by Business Finland and Academy
of Finland project #328729.

REFERENCES

[1] Paulo Canelas et al. “An Experience Report on Chal-
lenges in Learning the Robot Operating System”. In:
IEEE/ACM 4th International Workshop on Robotics
Software Engineering. 2022, pp. 33–38.

[2] Vincenzo DiLuoffo, William R Michalson, and Berk
Sunar. “Robot Operating System 2: The need for a
holistic security approach to robotic architectures”. In:
International Journal of Advanced Robotic Systems 15.3
(2018), p. 1729881418770011.

[3] Pablo Estefo et al. “The Robot Operating System:
Package reuse and community dynamics”. In: Journal
of Systems and Software 151 (2019), pp. 226–242.

[4] Anders Fischer-Nielsen et al. “The Forgotten Case of
the Dependency Bugs : On the Example of the Robot
Operating System”. In: IEEE/ACM 42nd International
Conference on Software Engineering: Software Engi-
neering in Practice. 2020, pp. 21–30.

[5] L. Garber. “Robot OS: A New Day for Robot Design”.
In: Computer 46.12 (2013), pp. 16–20.

[6] Nadia Hammoudeh Garcıa et al. “Bootstrapping MDE
Development from ROS Manual Code - Part 1: Meta-
modeling”. In: Third IEEE International Conference on
Robotic Computing. 2019, pp. 329–336.

[7] Nadia Hammoudeh Garcıa et al. “Bootstrapping MDE
development from ROS manual code: Part 2—Model
generation and leveraging models at runtime”. In: Soft-
ware and Systems Modeling 20.6 (2021), pp. 2047–
2070.

[8] Shahedul Huq Khandkar. “Open coding”. In: University
of Calgary 23 (2009), p. 2009.

[9] Seulbae Kim and Taesoo Kim. “RoboFuzz: Fuzzing
Robotic Systems over Robot Operating System (ROS)
for Finding Correctness Bugs”. In: Proceedings of the
30th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Soft-
ware Engineering. Singapore, Singapore: ACM, 2022,
pp. 447–458.

[10] Sophia Kolak et al. “It Takes a Village to Build a Robot:
An Empirical Study of The ROS Ecosystem”. In: IEEE
International Conference on Software Maintenance and
Evolution. 2020, pp. 430–440.

[11] Steven Macenski et al. “Robot Operating System 2:
Design, architecture, and uses in the wild”. In: Science
Robotics 7.66 (2022), eabm6074.

[12] Ivano Malavolta et al. “How do you Architect your
Robots? State of the Practice and Guidelines for ROS-
based Systems”. In: IEEE/ACM 42nd International
Conference on Software Engineering: Software Engi-
neering in Practice. 2020, pp. 31–40.

[13] Elisa Tosello, Nicola Castaman, and Emanuele
Menegatti. “Using robotics to train students for
Industry 4.0”. In: IFAC-PapersOnLine 52.9 (2019).
12th IFAC Symposium on Advances in Control
Education, pp. 153–158.


