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Abstract—Recent scientific and technological advances have
enabled robotic applications in various challenging domains,
which motivates means to better represent and manage the
subsequent increase in number and complexity of requirements.
We look into rulebooks of robotic competitions and benchmarks
as one publicly available source of requirements and acceptance
criteria for evaluating robots’ performance. From our analysis,
we derive a Feature Model containing common elements that
recur in descriptions of different robotic competitions. We argue
how these features can be used to express requirements and
acceptance criteria for robotic applications, within the context of
the Behaviour-Driven Development (BDD) paradigm. This can
serve as a mean not only to analyse and manage requirements,
but also to introduce automation into verifying and validating
requirements in robotics.

Index Terms—Robotics, Requirements, Model-Driven Engi-
neering, Behaviour-Driven Development

I. INTRODUCTION

The development of any complex system typically involves
a close interplay between requirements definition and system
design. Starting with a set of abstract requirements, engineers
identify design constraints and make decisions to shape the
initial system architecture. This necessitates the refinement of
the original requirements to be more specific, which in turn
leads to constraints and decisions that further shape the system
design as the development process progresses.

In recent years, robotic systems have emerged beyond
factory floors into domains such as healthcare and agriculture,
where they must face complex and unpredictable environments
while performing increasingly elaborate behaviours, some-
times involving interactions with humans and other robots.
Representing and managing requirements for such applications
can be exceedingly difficult, because of both their sheer num-
ber and the underlying knowledge from interleaving, complex
domains. In order to tackle this challenge, we investigate the
following research questions in this paper:

• Which methodologies and concepts are used for require-
ments specification in robotics competitions?

• How are the concepts of behaviour-driven development
applicable to specify robotics applications?

• What are the challenges for automatic verification of
acceptance criteria in a robotics context?
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Fig. 1: Images from official runs at the 2019 RoboCup@Work
World Cup in Sydney.

Towards finding answers for these questions, we first in-
vestigate in Section II the current practice of requirement
specification in robotics. As requirement-related artefacts for
commercial robotics applications are not easily accessible,
we focus our effort on publicly available sources for robotic
requirements, namely scientific publications, technical stan-
dards and rulebooks for robotic competitions and benchmarks.
Among these, competition rulebooks are of particular interest
because they describe not only the scenarios for verifying the
robotic systems against the specified requirements, but also the
criteria for evaluating the robots’ performance in carrying out
these scenarios. Drawing on direct experience with designing,
organizing and competing in many of these events [1]–[4], we
analyse these rulebooks to identify common concepts used to
express robotic requirements and present them in Section III
in the form of a Feature Model [5], as shown in Fig. 2. In
Section IV, we then investigate how these concepts can be
used to represent robotic requirements in an executable format,
specifically with Behaviour-Driven Development (BDD) [6], a
popular approach for acceptance testing. Finally, we discuss in
Section V the future steps towards automating the execution
of these BDD specifications.

II. BACKGROUND

A. Related Work

Bozhinoski et al. [11] survey robotic literature concerning
safety management for mobile robotic systems and present a
classification scheme for scientific publications on the topic.
While the study provides interesting insights and valuable
references for safety-related robotic requirements, its focus is
not in how such requirements are specified.

Other studies also analysed competitions and benchmarks
to gain insights about robotic applications. Sun et al. [8]
investigate grasping and manipulation tasks included in these
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TABLE I: Robotics competitions and benchmarks considered in this study.

Competition Abbreviation Event Years Rulebook Year

RoboCup@Home [4] HOME 2006–2022 2022

RoboCup@Work [2] WORK 2014–2022 2022

Evaluation methodology for healthcare competitions (HEART-MET) [3] HEART 2020–2022 2020

Robotic Grasping and Manipulation Competition [7][8] RGMC 2016–2022 2018

Robot Competitions Kick Innovation (RoCKIn) [1] RoCKIn 2014, 2015 2015

Soft Manipulation Project (SOMA) Bin-Picking Benchmark [9] SOMA 2019∗ 2019

Australian Centre for Robotic Vision (ACRV) Picking Benchmark [10] ACRV 2017∗ 2017
∗ No public competition organized.

events to identify key challenges and future research directions
for the robotic manipulation domain, which then guide itera-
tions of the task pool in Robot Grasping and Manipulation
Competitions (RGMC). Brancalião et al. [12] surveys mobile
robot competitions to investigate their educational impact via
analysing the events’ objectives and addressed challenges,
their final applications areas, their target audience, as well as
the technologies utilized at the competitions.

A recent study [13] examine experience reports from and
interviews with robotics companies to identify three “drivers”
of variability in the service robotics domain and investigate
how these companies manage them. While the variability
drivers, namely environment, robot hardware, and mission,
resemble respective features discussed in Section III, the work
in [13] has a different focus from our work and does not
explicitly consider requirements and their verification.

B. Sources of Requirements in Robotics

To the best of our knowledge, there are no repositories of
requirements publicly available in robotics. Studies looking
into private sources of requirements [13][14] typically rely on
experience reports and employees interviews that are difficult
to be done on a broader scale. Instead, we identify three
other open sources of robotic requirements, namely standards,
research in scenario modelling and scientific competitions.

1) Standards: Depending on the particular application do-
main for which the robotic system is developed, robots must
often adhere to one or more standards. Delivery robots that
traverse side walks and bike baths or autonomous cars, for
example, must comply to country-specific traffic regulations.
Few standards are available which directly address robotic ap-
plications [15]. Most notably, ISO/TS 15066:2016 1 is a safety
standard on industrial robots which extends ISO 10218-1 2 and
ISO 10218-2 3 for applications involving collaborative robots.
As standards must apply to a wide range of systems, specifica-
tion of requirements in these documents are typically at a high
level and do not specify how verification of these requirements
can be carried out. Instead, it is up to test engineers to define

1https://www.iso.org/standard/62996.html
2https://www.iso.org/standard/51330.html
3https://www.iso.org/standard/41571.html

test scenarios that, i.e. for collaborative robots, consider the
relevant methods for safety assessment [16] and associated
acceptance criteria to verify application requirements.

2) Research in Scenario Modelling: Modelling a scenario
to evaluate robot performance is an important step in de-
veloping robotic applications, which typically involves the
specification of some functional aspects of the associated
requirements [13][17]. For example, Knoop et al. [18] identify
“abstract task knowledge” for mapping to robot execution sys-
tem, which includes abstractions of robot behaviours and task-
specific constraints on the environment. As pointed out in [17],
few approaches exist that tackle the challenge of modelling
robot scenarios, and of the ones included in the paper, none
explicitly addresses verification of robotic requirements.

3) Robotics Competition Rulebooks: Yet another public
source of requirement specifications in robotics are rulebooks
of competitions and benchmarks. Compared to the sources
described above, rulebooks specify test scenarios at a concrete
level, while also include descriptions of how to evaluate
robots’ performance of such scenarios. Table I lists the compe-
titions and benchmarks considered in this paper. We focus our
study on ground-based competitions with manipulation tasks
and prioritize ones involving mobile robots and interactions
with human actors. As such, we omit competitions that do not
align with our focus, e.g. the Logistics League4 at RoboCup.
We also omit SciRoc5 and other European Robotics League
(ERL) 6 competitions because of significant overlap with
events already included in Table I.

III. ANALYSIS OF REQUIREMENT SPECIFICATION IN
SCIENTIFIC ROBOTIC COMPETITIONS

In general, rulebooks for robotic benchmarks and competitions
must define the Scenarios in which the robots must partake
and Evaluation Criteria for assessing their performance. Op-
tionally, the design of the scenario and evaluation plan may
depend on an overall Objective of the competition, i.e. a partic-
ular scientific or technological challenge that the competition
aims to address. In this section, we review the rulebooks

4https://ll.robocup.org/
5https://sciroc.org/
6https://eu-robotics.net/eurobotics/activities/european-robotics-league/
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Fig. 2: A feature model for rulebooks of robotics competitions.

of the events listed in Table I to further identify common
concepts, i.e. “features,” used to specify these benchmarks and
competitions and visualize our analysis in a Feature Model [5],
as shown in Fig. 2.

A. Competition Objective

As competitions and benchmarks typically approximate a
real robotic application to evaluate robot performance, they of-
ten require a general Objective to guide these approximations,
influencing how scenarios are defined and evaluated. Such
objectives may address specific research or technological chal-
lenges, or target specific application domains. For example,
the RoCKIn competitions, SOMA and ACRV benchmarks aim
to promote reproducibility of robot performance evaluation,
whereas HEART-MET targets “tasks relevant to healthcare
settings.” Some competitions also state more general, long-
term objectives that hold less impact over the competition
design, such as the RoboCup’s ultimate goal for a team of
autonomous robots to “win a soccer game [...] against the
winner of the most recent World Cup7.”

B. Scenario Definition

To compare and evaluate robot performance, rulebooks must
describe how the Scenario should unfold. Such descriptions
typically include information about the Environment in which
the scenario takes place, the Agents involved, and the Task that
the system under evaluation should perform.

1) Environment: Rulebooks’ specifications of the environ-
ment, in general, either describe the physical Objects that the
robot(s) may interact with, or abstract Workspaces in which
they may operate. Fig. 3 shows several formats employed
to specify a rotating table in RoboCup@Work [2]. More
environment specification examples can be found in Table II.

Objects are physical bodies in the environment with which
the robotic system(s) is expected to interact while performing
some task. Here, interactions can vary from simply trans-
porting an object from one place to another, to complex,
contextual manipulation tasks like opening a fridge door to

7https://www.robocup.org/objective

(a) Technical drawing (b) Picture

(c) Text and equations.

Fig. 3: Different specification formats for a rotating table [2].

look for food items [4]. In addition to the task, the choice of
objects may also depend on the objective the competition tries
to address. In [9] for example, to promote “comparability,”
five object categories of varying difficulty levels are proposed
to target known manipulation and perception challenges like
soft bodies or transparent objects. Robots’ performance can
then be associated with the object category chosen for their
specific execution, which allows for a better comparison across
different robotic systems and events.

Workspaces are abstract segmentations of the robot’s op-
erational space that hold distinct semantics in a task. For
competitions involving stationary robot arms [7][9][10], the
workspace is limited by the arm’s reachability around its
mounting location. Description of workspaces, in this case,
can specify constraints on objects to ensure that they are
reachable for the platforms expected at the competition. With
mobile robots, on the other hand, rulebooks may also describe
operating areas between which the robot(s) may have to
navigate. Examples include rooms in a flat [3][4] or “service
areas” equipped for specific tasks [2]. Here, rulebooks may
specify dimensions and functions of objects expected to be
in the workspaces, e.g. tools in “spatial areas” in [1], or
constraints on the pathway connecting these areas to ensure

https://www.robocup.org/objective


TABLE II: Exemplary environment descriptions in rulebooks

Comp. Objects Workspace

HOME Custom domestic objects Rooms in a typical flat (kitchen,
living room, ...)

WORK Custom, industrial-like objects
(screws, nuts, ...)

“Service areas” for “loading,”
with “rotating tables”

HEART “General domestic & healthcare-
related objects”

Rooms in a typical flat

RGMC YCB8, APC20159 Consists “table,” “basket,” ...

RoCKIn grouped by expected robot be-
haviour.

“Spatial areas”

SOMA “Fruits and vegetables products”
(including packaging)

“Positioning of robot and contain-
ers depends on reachability and
workspace of the robotic arm”

ACRV YCB, custom objects “tote is positioned within a 2 m
workspace in front of the shelf”

that robots can move freely between them [2]. Competition
environments can also comprise a hierarchy of workspaces. In
RoboCup@Home [4], for instance, the robot may be tasked
with bringing dishes from the table in the dining room to the
dishwasher in the kitchen. Here, “table” and the “dishwasher”
characterize workspaces that are contained in the dining room
and the kitchen, respectively.

2) Agents: Distinct from passive elements of the environ-
ment, competitions and benchmarks also include Agents which
can independently and actively exhibit behaviours in a task.
Most obvious are the System(s) under Test (SUT), i.e. the
robots being evaluated in the competition. Description of SUT
in the rulebooks may include expected capabilities and safety
features, e.g. having an emergency stop button, or constraints
on physical dimensions to ensure that they can move freely in
the competition arena. Additionally, some competitions require
the SUT to interact with other agents, here termed Actors.
These interactions typically involve the actors providing in-
formation or objects necessary for the SUT to carry out the
task. In tasks involving interactions with humans, e.g. in [3]
and [4], the missing information can be behaviours that the
robots must detect visually, or verbal commands that must be
acquired via speech recognition. The “Hand Me That” task
in [4], for example, requires the robot to detect and obtain
an object that the human actor is gesturing for. Apart from
humans, actors can also be other autonomous systems, e.g.
in [2] and [3], where the robots get task specifications from
and send feedback messages to an automated “referee box”.

3) Task: Descriptions of Tasks in a competition typically
include information about the Narrative of how the scenario
should play out, the Setup Constraints necessary for task
execution and evaluation, and the task Variations for properly
evaluating the robot performance.

A scenario Narrative describes how the “scenes” of the task

8Yale-CMU-Berkeley (YCB) object and model set. Online: https://www.
ycbbenchmarks.com/object-set/.

92015 Amazon Picking Challenge object set. Online: https://rll.berkeley.
edu/amazon picking challenge/

should unfold, typically as an outline of the robots’ expected
behaviours and their interactions with actors during task
execution. The “Object Handover” task in [3], for example,
includes step-by-step descriptions of how the robot should
communicate with the “referee box” and interact with the
human actor. Aside from procedural descriptions, rulebooks
may also specify objectives to be fulfilled by the end of the
task. In the “Storing Groceries” task in RoboCup@Home,
for instance, an objective is to group the objects by some
categories, on top of the narrative to transport objects from
the table to the cabinet.

Depending on the evaluation plan and the specific challenge
being addressed, competitions and benchmarks often introduce
Variations of the task for different executions. For example,
to promote reproducibility and comparability in evaluating
performance of the pick-and-place task, both the ACRV [10]
and SOMA [9] benchmarks introduce variations of the task
difficulty in slightly different manners. While both utilize
object cluttering as a factor for assigning difficulty levels, [10]
focuses on the reproducibility of geometric configurations of
the objects, whereas [9], driven by research interest in soft
manipulation, characterizes their task difficulty by classes of
challenging objects, e.g. articulated or deformable bodies. In
addition to environment aspects, rulebooks may also specify
variations of the actors’ behaviours. The “Object Handover”
task in HEART-MET [3], for instance, evaluates the robots’
ability to adapt its behaviour based on whether the human
actor is standing, sitting or lying down.

Finally, task narratives are typically accompanied by Setup
Constraints on various aspects of the environment and agents
to ensure both feasibility of the task and proper evaluation
of the robots’ performance. Such constraints may simply list
which objects or agents are required to be in the workspace,
e.g. a container for pouring [3][4][7] or a person to hand an ob-
ject to [3][4]. Constraints may also address task feasibility by
accommodating expected hardware limitations of the robots,
e.g. materials visible to perceptual sensors [2]. In addition
to feasibility, constraints may also ensure fair evaluation of
robots’ performance by specifying some properties that should
remain invariant across different executions. The “Where is
This?” task in [4], for instance, requires the human “operator”
to be “non-expert,” i.e. an audience member with no robotics
background, to make sure that their communication with the
robots is not biased by “expert” knowledge.

C. Evaluation Criteria

Having defined the scenarios, rulebooks then describe how
to evaluate robots’ performance as they carry out the specified
tasks. Evaluation Criteria in rulebooks are typically charac-
terized by the Quality Aspect that they aim to evaluate, and the
Observation Mechanism through which the evaluation result
can be obtained.

1) Quality Aspect: Evaluation criteria aim to assess some
Quality Aspect of the systems’ performance, which can be
functional or non-functional. We base this distinction on the
terminology in requirements engineering, where functional

https://www.ycbbenchmarks.com/object-set/
https://www.ycbbenchmarks.com/object-set/
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TABLE III: Common evaluation criteria in robot benchmarks and competitions

Quality Aspect Examples Competition Observation
Mechanisma

Functional
Success criteria Item is in the work order, not dropped from more than 35 cm when placed in the tote ACRV Mn

“Object is transported out of the corresponding Service Area” WORK Mn

Failure criteria, i.e.
terminating conditions

“Robot damages or destroys the manipulation objects” RoCKIn Mn
“May not take more than 15 minutes to fulfil the full work order” ACRV Mn

Partial success or failure Hammer a Nail task: 2 points for driving the nail up to 5.1 cm (5 points for full depth) RGMC Mn
−100 points for “object being dropped to the floor” WORK Mn
“reduction of 10% of the maximum score when the robot request a partial solution” HOME Mn

Non-functional
Robustness Variations of success rate, i.e. successful executions over total number of attempts SOMA, ACRV Mn

Execution time Bonus points for finishing scenario with extra time WORK Am
Average and standard deviation of duration of a successful pick-and-place cycle SOMA Mn

Compositions
i.e. combinations of
multiple criteria

Storing Groceries task: 50 points for each successful transportation of 5 objects, 90 points
for each successful categorization.

HOME Mn

a Observation Mechanism: Am: Automated, Mn: Manual.

requirements are ones that concern the expected behaviour of
the system, i.e. describing what the system shall do, whereas
non-functional requirements address any other quality aspects
that are not covered by functional requirements [19].

Here, we consider an evaluation criterion to be functional
if it assesses whether the SUT is exhibiting its expected be-
haviour, i.e. establishing what constitute the SUT’s behaviour
to be “correct” or “incorrect” compared to what is expected.
An example of a “correctness” criterion can be found in
manipulation tasks of the RoboCup@Work competition, where
an object is considered successfully picked up if the robot
“transports it out of the corresponding Service Area,” which
has “infinite height.” Criteria for identifying “incorrect” be-
haviour may determine that the SUT’s behaviour has diverged
so far from expectation for the task to be feasible, is violating
some critical safety constraints, or that the execution time has
exceeded a predefined limit. Examples include knocking over
objects [7] or uncontrolled collision with the environment or
human actors [3][4]. Additionally, “partially correct” criteria
allow for tolerance of some “incorrectness,” usually in the
form of partial scores or penalties. The RoboCup@Home
competition, for instance, allows the assistance of human
actors for some of its tasks in exchange for some reduction of
the total scores given to the robot’s performance.

While non-functional criteria do not directly address the
“correctness” of system behaviours, they rely on knowing
whether the behaviour is correct to evaluate other quality
aspects. For example, several competitions [10][9] employ
“success rate” to evaluate robot performance, typically as
the ratio between the number of successful executions over
the total number of attempts. This criterion characterizes the
robustness of the system behaviour, but it relies on the criteria
that classify whether an execution is “successful” or not.

Finally, robot performance may be evaluated using a com-
bination of functional and non-functional criteria. This is
especially common at robot competitions [2][3][4], where
tasks may involve compositions of robot behaviours. Here,

scores are typically accumulated from several functional and
non-functional criteria to calculate an overall performance
score at the end of each execution.

2) Observation Mechanism: Rulebooks also specify mech-
anisms through which evaluation criteria can be applied to
draw conclusions about the robots’ performance. Most compe-
titions and benchmarks employ human judges to carry out the
evaluation process. Even with detailed descriptions of the cri-
teria, the evaluation in this case still depends on the subjective
view of the judges. RoboCup@Work, for example, has specific
criteria for what constitutes a valid picking behaviour, but
scoring is done by human referees observing the robots from
different perspectives. HEART-MET, RoboCup@Work, and
RoCKIn utilize an automated “referee box” in the evaluation
process, but only to measure execution time to give bonus
points for finishing the task early.

IV. BEHAVIOUR-DRIVEN DEVELOPMENT FOR ROBOTICS

Behaviour-Driven Development (BDD) [6] is a popular ac-
ceptance testing approach, which extends Test Driven Devel-
opment (TDD) [20] by formulating the acceptance criteria
for each Feature as a list of Scenario’s that capture
the expected behaviours of the System under Test (SUT).
Each Scenario is specified using the semiformal construct:
Given [initial conditions], When [an event occurs], Then
[ensure outcomes]. Most notable among BDD implemen-
tations is the Cucumber10 toolchain, which introduces the
Gherkin syntax with support for automatic execution avail-
able in Java, C++, Ruby, Python and many other languages.
Gherkin extends the original BDD formulation with additional
keywords like Background and Examples to ease the
transformation of acceptance criteria into executable BDD test
cases. While such tooling and automation support for BDD
has been successfully leveraged in many other domains, its
adoption in robotics remains limited to a few research articles.
Of the identified publications, [21] and [22] employ BDD to

10https://cucumber.io/

https://cucumber.io/


enable formal verification of some execution model of Cyber-
Physical Systems (CPS), whereas Deng et al. [23] uses BDD
scenarios to describe metamorphic relations of driving models
in autonomous driving.

In this section, we investigate how we can leverage the BDD
methodology and tooling for specifying robotic requirements.
To ground the discussion in a concrete example, we consider a
pick-and-place behaviour, which appears in most competitions
and benchmarks. We first discuss how BDD scenarios for one
variant of this behaviour, e.g. the “Basic Manipulation Test”
at the RoboCup@Work competition [2], can be formulated
using concepts identified in Section III. Here, we also pinpoint
aspects of the acceptance criteria that remain difficult to rep-
resent using the BDD methodology, even with the extensions
introduced in Gherkin. Afterwards, we identify challenges
with formulating BDD scenarios for different variants of the
same pick-and-place behaviour from various rulebooks.

A. Applying BDD to One Pick-and-Place Variant

Listing 1 shows how a BDD Feature for the pick-and-
place behaviour in the RoboCup@Work competition may be
formulated using the Gherkin syntax. We observe that the
rulebook’s instantiations of concepts described in Section III
can be used to populate the BDD clauses in our example.

First, BDD features typically begin with a user story in
the form As [role] I Want [feature] So That [benefit]. In
Listing 1, the user story is specified using the Narrative of
the Basic Manipulation Task (BMT) in the RoboCup@Work
rulebook. Next in this example is the Background sec-
tion containing Given clauses, which is an extension of
the original BDD formulation [6] introduced by Gherkin to
specify conditions common to multiple Scenarios of a
Feature. Here, the section is used to specify attributes of the
Environment that can be referred to later on in the scenarios,
e.g. when a Then clause evaluates whether an object is heavy
in order to give bonus points.

In Listing 1, the pick-and-place behaviour is decomposed
into two distinct scenarios, respectively, for the picking and
placing portions of the task. In the pickup scenario, the
Given clause constraining the object’s position at the service
area is a Setup Constraint based on the reachability of the
competition’s standard robot platform. The When clauses in
both scenarios describe events which trigger the picking and
placing behaviours, which in this case refer to capabilities of
the SUT to detect objects and localize in the environment.
The Then clauses in the scenarios specify the functional
Evaluation Criteria for determining the validity of a picking
or placing behaviour, which serves as the basis for scoring
the robot’s performance throughout the task. Gherkin also
introduced Examples, which works in conjunction with
Scenario Outline to substitute terms surrounded by an-
gle brackets (<>) by values listed in the tables accompanying
each scenario. In Listing 1, this allows for Variations of the
objects and the service areas for the pick-and-place task.

Even with the additional keywords introduced by Gherkin,
not all information relevant to describe robotic acceptance

1 Feature: basic manipulation test
2

3 As A Competititor
4 I Want the robot to transport some objects
5 between two service areas
6 So That I can test basic manipulation
7 functionalities of the robot
8

9 Background:
10 Given a set of objects
11 | ID | Mass_g |
12 | F20_20_B | 49 |
13 | Axis | 40 |
14 And service areas
15 | ID | Type |
16 | P1 | Plane |
17 | P2 | Plane |
18 | S1 | Shelf |
19

20 Scenario Outline: pickup
21 Given "<object>" is between 2cm and 20cm
22 from the edge of "<service area>"
23 When "<object>" is located
24 Then "<object>" is out of "<service area>"
25

26 Examples: Objects and service areas
27 | object | service area |
28 | F20_20_B | P2 |
29 | Axis | P1 |
30

31 Scenario Outline: place
32 Given "<object>" is picked up by the robot
33 When the "<service area>" is reachable
34 Then "<object>" is touching the surface of
35 "<service area>"
36 And "<object>" is not moving
37 at the end of the run
38 And the robot does not drop "<object>"
39

40 Examples: objects
41 | object | service area |
42 | F20_20_B | S1 |
43 | Axis | P2 |

Listing 1: A potential BDD specification in the Gherkin syntax
for the pick-and-place behaviour in the RoboCup@Work
competition [2]. The navigation between service areas is
omitted for simplicity.

criteria can be easily captured by the BDD formulation.
In Listing 1, the pick-and-place behaviour is decomposed
into separate scenarios for picking and placing. This im-
plies the successful completion of the first scenario is
a precondition for the second scenario, e.g. the clause
Given "<object>" is picked up... , which is in-

formation available only at runtime. In addition to such causal
relations between scenarios, a scenario in one Feature may
be reused in another. For instance, the HEART-MET competi-
tion [3] has a “Transport Drink” task which involves the pick-
and-place behaviour similar to the one described in Listing 1.
The competition also has two other tasks, however, in which
the robot has to either hand the object to another person
or pour its content into a cup, respectively. Here, the same
picking scenario is coupled with different scenarios for each
behaviour, which would likely result in repetition in current
BDD implementations.

Furthermore, while Gherkin provides the Background
keyword for shared preconditions within a Feature, this
does not account for ones which are common for multiple



TABLE IV: Some common robot behaviours in robot com-
petitions. ✓∗ denotes that multiple variations of the same
behaviour are used at the competitions.

Behaviour HOME WORK HEART SOMA RGMC ACRV

Pick ✓ ✓∗ ✓ ✓ ✓∗ ✓

Place ✓∗ ✓∗ ✓∗ ✓ ✓∗ ✓

Navigate ✓ ✓ ✓

Pour ✓ ✓ ✓

Hand-over ✓ ✓

Feature’s. Objects, for example, can be relevant across all
tasks in a competition, or even across competitions in the
case of standard sets like the YCB object set. Additionally,
Background does not include Then clauses for evaluation
criteria that may apply to multiple scenarios, such as ones for
valid picking and placing behaviour shown in Listing 1.

Finally, one important aspect of “behaviours” not explicitly
addressed in the BDD formulation is the duration of their
execution. This is distinct from what is specified by the When
clause, which signifies the beginning of the behaviour. In
this case, evaluation criteria of robot performance often imply
some timing constraints on when they should be checked. For
instance, the criterion object is out of service area in List-
ing 1 should be checked only after the picking behaviour has
completed. Such constraints can characterize the boundaries
of time durations, e.g. “before,” “within,” “after,” or denote
intervals, e.g. “every 30 seconds.” While expressing these
constraints as texts and numbers is possible in BDD tools, the
temporal semantics they hold would be lost, which can hinder
the specification of constraints that apply to multiple scenarios.
An example is the overall time limit of the Basic Manipulation
Task shown in Listing 1 which would encompass timing
requirements for the both picking and placing behaviours.

B. Applying BDD to Different Pick-and-Place Variants

As listed in Table IV, tasks in robotic benchmarks and
competitions often involve similar robot behaviours. The pick-
and-place behaviour, for example, appears in all competitions
in Table I. RoboCup@Work includes multiple variations of
this behaviour, where the robot must pick from a rotating table
or place in cavities tailored to object shapes (shown in Fig. 1).
This motivates the formulation of more abstract BDD scenar-
ios that can accommodate the different variability dimensions
of expected robot behaviours, i.e. acceptance criteria, as well
as a mechanism to introduce these variations when considering
a specific task or competition.

The Feature Model described in Section III can serve as
the basis for introducing such abstractions to BDD scenarios.
Several features in Listing 1, for example, can be replaced
with more general versions that can accommodate variations
of the task in different rulebooks. Specifically, consider a
more abstract Setup Constraint for the picking behaviour,
target object is reachable , and more abstract Evaluation Cri-

teria, target object is picked up and target object is placed ,
for evaluating the robots’ performance. Table V shows how
different rulebooks may describe variations of these abstrac-
tions. While abstracting BDD scenarios can allow them to
cope with variability in rulebooks’ descriptions, evaluating a
particular variation of the task requires the variation-specific
information to be reintroduced. Designing and implementing
a mechanism to do this remains open for future work.

V. TOWARDS EXECUTABLE ROBOTIC SCENARIOS

In Section IV, we discussed how features identified in Sec-
tion III can be used to formulate BDD scenarios that capture
requirements in robotic competitions and benchmarks. To
make these BDD scenarios executable, a traditional approach
would require significant manual implementation of test code
to verify each Given, When, Then clauses. These implemen-
tations require runtime information available only during test
execution and may not be easily expressed using BDD.

Consider the pickup scenario in Listing 1. Such runtime
information includes the geometric configurations of objects
relative to each other before and after the picking behaviour
for checking the Given and Then clauses. This requires a
mechanism to monitor measurements of relevant geometric
quantities throughout execution of the behaviour.

Additional timing information about the behaviour is also
necessary to trigger transitions between the scenario clauses
and to indicate when to evaluate the outcome of the behaviour,
i.e. Then clauses. In Listing 1, only information about when
the behaviour begins, e.g. object is located , is available. An
executable scenario, therefore, would require both explicit
specification of such timing information and communication
of this information from the robots to the test process.

Such measurement and communication mechanisms must
cope with various variability dimensions introduced by dif-
ferent robotic platforms, each having different software
and hardware capabilities. Furthermore, competitions like
RoboCup@Home and RoboCup@Work also offer simulation
leagues which include the same tasks used in real world events.
In this case, the semantics of the runtime information required
does not change, but the mechanisms used to acquire such
information may differ compared to in the real world.

Notably, via the use of the “referee box,” the HEART-
MET [3] competition requires the robot to provide certain
runtime information about its performance. For example, in
the object handover task, the robot must communicate its
estimation of the human actor’s pose and whether the person
successfully grasped the object. While this mechanism must
depend on the accuracy of the robots’ estimation, it partially
enables the automatic evaluation of the robots’ performance
and can serve as inspiration for a more general approach.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we analyse rulebooks of robotic competitions and
benchmarks as a publicly available source of requirements for
robotic applications. From our analysis, we identify concepts
recurring in descriptions of these events and present them



TABLE V: Variations of specification in different rulebooks for the same abstract criteria.

Variation target object is reachable target object is picked up target object is placed

WORK BMTa Manipulation zone of service area:
• minimum depth is 20 cm
• object is at least 2 cm from edge
• ...

Transported out of service area. Service area
has infinite height.

Standard criteria for valid placing:
• object touches surface of service area
• object does not move
• ...

WORK PPTb Same criteria with WORK BMT. Same criteria with WORK BMT. Object falls through the correct cavity and
touches the ground beneath.

WORK RTTc Minimum distance from edge of service area is
2 cm.

Same criteria with WORK BMT. Also: robot is
not allowed to stop the object with its gripper.

Object is on the robot (implicit)

HEART TOGFd Object is on the flat surface (implicit). Robot holds the object for a minimum duration.
Grasp’s position and orientation matches task
specification.

Not evaluated.

ACRVd Arm base’s centre is 1.5 m away from the shelf,
rotated by ∼ 45◦.

Object is in work order. Object is placed in the tote without being drop
from higher than 35 cm.

a Basic Manipulation Test.
b Precision Placement Test: robot must drop objects through corresponding cavities.
c Rotating Table Test: robot must pick objects from a rotating table and place the object on itself.
d Task-Oriented Grasping Functionality: robot must pick up the object based on some constraint, then put it back on the surface.

in the form of a Feature Model. We then argue how these
features can be used to specify robotic requirements using the
Behaviour-Driven Development (BDD) formulation. We also
discuss the challenges of using BDD, even with extensions
introduced in Gherkin, to formulate robotic scenarios as well
as to make them executable. This motivates an approach to
the BDD methodology which can accommodate the various
domain knowledge involved in the scenarios, their interde-
pendent relations, as well as different compositions of the
scenarios themselves. Such an approach can be the basis for
introducing a community-driven repository of BDD specifica-
tions for robotic competitions, similar to one proposed by [24].
Finally, automation of such an approach would still require
a mechanism to communicate relevant runtime knowledge
about the system, which informs how and when the specified
acceptance criteria can be verified.
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