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Abstract—Commercialized collaborative robots (cobots) are
typically programmed in proprietary languages and employ
interfaces that gather data at predefined frequencies, such as
the Real Time Data Exchange offered by Universal Robots (UR).
This approach challenges the observability of program execution
during runtime. To address this issue, the paper proposes
applying software architectural knowledge from the introspection
of Cyber-Physical Systems (CPSs) to the robotics domain. The
proposed solution is to replace the classical protocol interfaces
with an Event-Driven Architecture, enabling the acquisition of
program events in relation to state variables and thus, richer
information concerning runtime. The proposed architecture,
called the Event-Driven Data Exchange, is implemented and
evaluated on a UR e-Series cobot in a practical study. The study
highlights the significance of implementing software architectural
knowledge in CPSs, such as cobots to extend observability and
data availability.

Index Terms—Event-Driven Architecture, Industrial Automa-
tion, Collaborative Robots, Program Monitoring, Debugging and
fault localization, Data Collection, Software traceability

I. INTRODUCTION

Cyber-Physical Systems (CPSs) often combine software
and hardware from various fields, leading to diverse software
architectures. Classical protocol interfaces limit the ability
to thoroughly introspect these systems, resulting in difficulty
obtaining precise runtime information for examining program
execution events [1]–[3]. This issue persists in the robotics
domain, potentially hindering debugging, optimization, and
performance. As such, there is a significant opportunity to
apply software architectural knowledge at the lowest levels of
the software stack to address these challenges.

Robots can be programmed to execute various tasks within a
work cell, also commonly referred to as the robot application.
Safety and maintenance represent substantial concerns in the
robotics field [4], [5]. To address safety, robots have been
engineered with advanced safety mechanisms, allowing oper-
ation in near proximity to humans. This design approach has
resulted in the development of collaborative robots (cobots).

In the domain of robotics, software contributions, such as
the Robot Operating System (ROS), have been instrumental
in promoting innovation. However, in the commercial sector,
robots are often programmed using proprietary languages [7].
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Additionally, cobot applications are increasingly complex, re-
quiring more coding for regular maintenance and optimization
due to the combination of hardware and software components.
Therefore, robot programs are rarely a one-to-one transfer
[2], [3]. The growth of robotic automation further underlines
the importance of methods for comprehensive introspection of
cobot applications to enable accurate analytics and examina-
tion of programming-related runtime execution [6].

Commercial cobot manufacturers offer classic frequency-
based data collection interfaces, such as the Franka Emika
Control Interface (FCI) [8], Fanucs’ Remote Sensor Interface
(RSI) [9] and Universal Robots (UR)’ Real Time Data Ex-
change (RTDE) [10], which provide information about the
cobot’s state, i.e., force-torque sensor values, joint angles and
velocities, or motor temperatures. However, the raw time series
obtained from these interfaces are difficult to synchronize
accurately with program lines, which increases processing
requirements and reduces the accuracy of diagnostics and
maintenance. Despite the availability of tools such as the
URLogViewer [11], which enable the examination of robot
state variables over time, the precise segmentation of time
series and program execution events is still lacking in the
robotics domain. This poses a challenge to debugging and
validating cobot application programs, as time series alone
are often insufficient to associate specific events with program
lines.

This paper proposes, implements, and evaluates the integra-
tion of an Event-Driven Architecture (EDA) as a replacement
for the classic frequency-based data generation model to
enable accurate introspection of cobot applications. An EDA
is a software architecture promoting the creation and reaction
to events [12]. By introducing this architecture to the lowest
level of the software stack, data generation can be segmented
based on runtime events. This idea is evaluated in an industrial
setting, highlighting the importance of low-level event-filtering
in cobot applications.

We make the following contributions:
• The Event-Driven Data Exchange (EDDE), which accu-

rately associates robot state information with program
events.

• A generalizable architecture that can be replicated for
cobots using proprietary languages.
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Fig. 1: Depicts how event-driven methods produces better time series data than frequency-based methods. The proposed method
combines program execution events (cyber) with robot state information (physical) to create a single event trace.

• An extensive evaluation demonstrating how the new data
can support cobot analytics and optimization methods.

• A practical study that highlights the benefits of applying
software architectural knowledge to data generation in the
robotics domain.

II. RELATED WORK

The adoption of software architectural methods from CPSs
into robotics has led to increased traction from the software
engineering community [1]–[3], [13], [14]. This interest is,
in part, associated to the shift from domain-specific cobot
applications to multi-robot systems, which introduces new
requirements for the robot software architecture, e.g., observ-
ability [15].

A. Event-driven architectures in robotics

Decentralized service oriented architectures have been pro-
gressively adopted in the robotics domain [3], [13], partly due
to early contributions such as ROS [7]. ROS provides a struc-
tured management and processing layer above a homogeneous
communication layer, which unites different edge devices
and supports scalable CPSs, thus enabling the integration of
technological equipment and agents within a cobot appli-
cation. To enhance system reliability, software architecture
introspection techniques from CPSs, such as those discussed
in [2], have been used to statically detect misconfiguration
bugs that may occur during runtime initialization of system
components. These bugs are defined by ROS launch files,
which determine the procedural and configurable settings for
system initialization.

Robot manufacturers commonly provide drivers that enable
integration with ROS. In the processing layer of ROS, services
utilizing event handlers, which implement the observer pattern,
can be deployed to trigger on specific thresholds related to a
data stream. This is likely facilitated with connection to a con-
ventional data collection interface or data distribution protocol.
Several methods can be employed to analyze program events
using these interfaces. One such method is based on pattern
recognition, which detects recurring structural occurrences
in the extracted time-series data, also known as Motifs in
machine learning [17]. However, model-based techniques can
be highly inaccurate and never provide a precision greater
than the resolution of the time series. Another approach is to
integrate additional code lines into the original program, com-
monly known as ”code between the lines” [18]. This solution
could trigger a digital output before and after each program

line to indicate the data transition in a robotics program,
but supplementary semantics increase code complexity. Both
methods rely on data that may be off by one in each time step.
While ROS event handlers promote the use of event-driven
processing pipelines, they operate on top of frequency-based
technologies.

B. Event-driven architectures for introspecting CPSs
Although a contribution of comprehensive event-driven ar-

chitectures to enhance the introspection of cobot applications
during runtime has yet to be realized, an example of how such
a solution can benefit CPSs is presented by NEAT in the do-
main of energy-efficient smartphone applications [16]. NEAT
provides software that autonomously fuses sensor readings
with event logs extracted from the phone’s operating system,
concurrently recording events from the Android kernel and
system/user space, i.e., cyber data, and power measurements,
i.e., physical data, merging them into a combined power trace.
By implementing an EDA close to the data source, NEAT
maintains cohesion and eliminates the challenge of accurately
obtaining data during post-processing. This strategy to com-
bine digital occurrences with physical consequences at the
lowest level of the stack could inspire software solutions for
introspection in the robotics domain by considering program
execution events as the cyber component and the robot state
information as the physical component.

III. SYSTEM CONCEPT

This work aims to develop a solution that allows for in-
stantaneous fusion of robot state data with program execution
events, enabling accurate introspection of cobot applications.

Figure 1 illustrates the disparity in processing requirements
between the proposed EDA and frequency-based methods
(FBM) for linking cyber and physical data. The use of FBM in
extracting program information through frequency-dependent
data collection interfaces necessitates multiple processing steps
to obtain comprehensive robot state information in association
with events. As earlier mentioned, these methods increase
complexity.

The RTDE generates data outputs at a rate of 125 Hertz,
while the FCI can generate data at up to 1 kilohertz [8], [10].
The precision obtained by frequency-based methods assuming
perfect event recovery is at best in millisecond resolution,
whereas recording data and program events in parallel allows
for the merged composition to be logged accurately and ex-
ported with minimal overhead. Additionally, frequency-based



methods produce a fixed data amount that increases linearly
with time, i.e., approximately 2000 bytes per push for the
RTDE’s inclusion of all robot state information.

By allowing the system to push data based on instantaneous
relations between code lines and variables, redundant logging
is eliminated, and the total amount of data is minimized.
The additional output includes only an integer indicating
the current sequential location of the code line within the
proprietary programming language, which is 4 bytes in size.

IV. EVENT-DRIVEN DATA-EXCHANGE

The classical data collection interface in the e-Series cobots
provided by UR, the world’s largest cobot manufacturer, is
renewed by implementing the EDDE protocol. The EDDE is
based on a push-based EDA [12], as shown in the component
diagram in Figure 2. This presents the cobot as a CPS and
illustrates how the robot program events traverse the system
components and are ultimately exposed as output through the
EDDE. This architectural placement does not require the use
of both methods, but rather clarifies their placement in relation
to one another.

Robot programs for e-Series cobots are written in URScript,
the proprietary programming language of UR. This is not
uncommon in industrial automation, as other examples include
KRL, PDL, RAPID, AS, and KAREL. The architecture shown
in Figure 2 is generalizable and transferable to other systems.
However, unique to Franka Emika is that they provide a C++
library and mostly depend on ROS for deployment [20].

The URScript robot program is executed by the cobot’s
software system through a controller. The program lines are
translated into an Abstract Syntax Tree (AST) that breaks them
into functions and primitives. These functions, which are based
on boilerplate code, take argument values from the script and
may require physical time to execute, e.g., waypoint functions
that move the cobot. Due to safety constraints, these functions
are typically executed in discreet steps to ensure continuous
validation and synchronization in the CPS intersection [21].

The EDDE follows an observer pattern, continuously mon-
itoring data points and logging information at the exact time
the cobot controller software transitions between steps, during
runtime execution. By mapping step-wise program events
to specific code lines and appropriate data points, the data
collection can be replicated across robot systems assuming
the necessary sensors are available. This approach offers the
highest achievable precision for event-based introspection of
robot programs during runtime execution, to our knowledge
[16].

A. Extending data-availability

The consideration of architectural redesign extends to the
availability of data with respect to robotic software observabil-
ity. Conventionally, interfaces in the robotics domain provide
access solely to the robot state information, which expresses
the physically measurable conditions of the cobot and its
internal components [8]–[10]. This includes joint and end-
effector angles, velocities, accelerations, motor temperatures,
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Fig. 2: Illustrates the positioning of the EDDE within the e-
Series software architecture, as well as the control inputs and
data outputs.

currents/voltage, as well as estimations of externally applied
torques and forces, and collision information. In addition, the
EDDE provides access to a multitude of information that
was previously inaccessible through traditional data exposure
interfaces. Specifically, the EDDE exposes information related
to the entire cobot application, installation variables, and
values in the computation model of the controller.

Cobot application: The EDDE exposes I/O communi-
cations, including configurable, digital, and analog signals,
which are typically linked to the cobot through the end-
effector, the base, or an external control box. This provides
insight into the cobot application by allowing access to infor-
mation on interoperable occurrences in the application, i.e.,
of great importance for comprehensive introspection, as the
environment often affects the system’s performance.

Installation variables: These can be introduced manually
by the programmer or automatically during the installation of
robot software, such as when installing a gripper. By allowing
access to these variables in conjunction with precise event
information, the EDDE facilitates high-resolution debugging
of states in a robot program

Controller variables: The EDDE exposes important con-
troller variables that provide information on program events
and computational resources, such as CPU usage, memory
usage, and execution time per step. It also includes angular
values for joint positions and the determinant of the Jacobian
matrix, which is useful for detecting singularities, i.e., where
joints or the end-effector become blocked by physical con-
straints.

V. EVALUATION

The implementation details of the EDDE in a proprietary
software stack of a major robotics manufacturer are restricted.
However, given the architectural representation and description
of the paradigm, the methodology can be replicated. The
addition of the EDDE to the stack was completed in three
months and can be deployed with any e-Series cobot without
impacting system response time, constrained only by a few
system version requirements. To demonstrate the capabilities
of EDDE, we conducted several practical studies in an indus-
trial setting based on real measurements.

Well-informed interpretations of event-based system in-
trospection begin with rich visualizations and the precision
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provided by the EDDE interface is necessary to achieve results
such as those presented in these studies.

We present the program illustrated in Figure 3. The focus
of our evaluation is on a single program that encompasses the
most frequently utilized features of a cobot. This program in-
corporates contrasting waypoint functions, several proprietary
script functions, and a loop that iterates the same sequence
of program lines thrice. Proprietary script functions refers to
the script files that are separate from the main cobot program.
The figure showcases the execution time for each line and
presents information derived from a single program cycle. It
also indicates the frequency of occurrences of events during
the execution of each line, measured in hertz. Investigating
the loop, our findings reveal that identical program lines can
result in discrepancies during execution. These discrepancies
are possibly linked to physical, environmental, or hardware
inconsistencies and the computation of intermediate waypoints
during each stepwise execution.

The findings emphasize the advantages of event-driven
techniques for data generation. The amount of information
varies significantly with respect to each program line due to the
differing frequency of calculations performed during program
execution. This implies that logging based on a fixed frequency
can result in redundant or insufficient information. Moreover,
although repetitive execution occurs based on identical lines,
as in the case of waypoint 7, the number of events is incon-
sistent, leading to varying required, and acquired, sampling
frequencies.

The placement of the EDDE in association with the exe-
cution model of the controller has enabled us to conduct a
more thorough examination of the program, as depicted in
Figure 4. The visualization provides a concrete description
of the time required to execute instructions corresponding
to each program line. It reveals the time spent on physical

execution in relation to waypoint functions or waiting for
the physical state to synchronize with the calculated state.
Additionally, it offers insights into code efficiency by clearly
indicating the processing time. This is particularly useful for
script functions as it allows the programmer to evaluate the
efficiency of proprietary implementations. Furthermore, the
figure demonstrates the extent to which the instructions within
each line depend on boilerplate code.

A. Comparing the measured behavior of robot state data

Figure 5 presents a comparison between trendlines obtained
from the distinct interfaces. We compared the acceleration
data collected from the EDDE and the RTDE interfaces to
the baseline. Both measurements were recorded concurrently,
and the timestamps obtained from the EDDE data were used
to mark the transition from one program line to another in both
plots. We restricted the x-axis range to approximately 25-30
seconds to emphasize the difference between the two signals.

The results indicate the difference in precision in relation
to cohesion between robot state data and program events. The
frequency of events recorded by the EDDE is directly linked
to the previously mentioned event frequency. However, since
events are associated with program lines and not acceleration,
this value may not change with each push event. Nonetheless,
the benefit of collecting data conditionally on program events
is that we acquire information that pertains to changes in the
application rather than unbiased information over continuous
time.

By accurately segmenting program events, we can create
distribution functions that show the performance of any avail-
able data type. When program lines are similar, such as differ-
ent waypoint functions, these distributions can be compared
and used to select methods for completing specific tasks.
In Figure 6, we compare the TCP-position error calculated
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Fig. 5: Compares trendline behavior from parallel recordings
using the traditional RTDE and the novel EDDE.
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Fig. 6: Compares the distributions of calculated TCP-position
errors in waypoints for Move (L) and Move (J) program lines.

between the two types of waypoint functions used in the pro-
gram. The y-axis shows the normalized number of values for
each bucket on the x-axis. A bucket corresponds to an interval
from ((vmax−vmin)/imax)∗i to ((vmax−vmin)/imax)∗i+1,
where i ranges from 0 to 40. The results indicate that functions
with move (L), 0.456, as the outset are slightly more precise
than those based on calculations with move (J), 0.547.

The EDDE facilitates the visualization of program lines in
relation to movement and proximity to a singularity, as shown
in Figure 7. The trajectory’s thickness and color represent
the determinant value, indicating higher joint strain during
the execution of waypoints with move (L). This emphasizes
the need for program optimization, among others, including

adjustments to the velocity, acceleration, and trajectory.

program start

next program-node

Fig. 7: Displays TCP position throughout one execution cycle,
with correlation to the determinant of the Jacobian matrix to
detect improper movement.

VI. DISCUSSION

This work aims to demonstrate the potential of applying
software architectures for introspecting CPSs to the field of
robotics. The EDDE interface provides new opportunities
for analyzing cobot applications by allowing access to data
associated with specific program events. This enables pro-
grammers to debug different robot states within a program
cycle and examine interactions with other application com-
ponents, including I/O signals and collision information. By
monitoring cobot runtime execution, faulty coding practices
can be identified and application efficiency can be improved



through program optimization. This promotes the development
of efficient and robust applications in the robotics domain.

The benefits of using the EDDE interface include the ability
to compare the behavior and runtime execution of similar
applications across different cobots. This solution can be
scaled to a wider range of cobots from various manufacturers
by starting with the association between the parsed proprietary
programming language in the controller and the stepwise ex-
ecution. However, scaling EDAs to the entire robotics domain
would require a common standard that all industrial robots
must adhere to. This would need to account for variations
in the shape, size, and degrees of freedom of cobots from
different manufacturers, e.g., while UR offers cobots with 6
joints, Franka Emika delivers cobots with 7 joints, creating a
discrepancy in the calculation model.

The drawbacks of implementing the EDDE interface are
primarily the need for updating interfaces in different cobot
software systems and the additional 4-byte overhead. However,
the benefits include the potential for data-driven models for
optimization, such as improving cobot energy consumption
through motion planning, as in [22]. With the EDDE inter-
face, models can report based on independent program lines,
leading to higher resolution and improved data quality for
model training. Furthermore, the solution has applications in
fields such as the building industry, where motor control for
ventilation systems relies on pull-based data collection and
machine learning for event recovery [19].

VII. CONCLUSION

In this paper, we have demonstrated the potential of an
Event-Driven Architecture (EDA) to improve the classical pro-
tocol interfaces for data exposition in the robotics domain. By
designing and implementing the Event-Driven Data Exchange
(EDDE) in an industrial setting, we have shown that an EDA
can provide precision and accuracy when introspecting Cyber-
Physical Systems (CPS), such as collaborative robots (cobots).
The EDDE’s generalizable software architecture accommo-
dates modern robot control solutions offered by many man-
ufacturers, making the solution transferable. By incorporating
access to I/O communication signals, installation variables,
and computation model variables, the EDDE allows potential
monitoring of occurrences in the entire interconnected cobot
application. The practical study we conducted demonstrated
that an EDA has the potential to grant access to new runtime
information, such as the processing performed within each
program line.
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