
Augmenting Robot Software Development Process
with Flexbot

Paulius Daubaris
Department of Computer Science

University of Helsinki
Helsinki, Finland

paulius.daubaris@helsinki.fi

Juhana Helovuo
Atostek Oy

Tampere, Finland
juhana.helovuo@atostek.com

Niko Mäkitalo
Department of Computer Science

University of Helsinki
Helsinki, Finland

niko.makitalo@helsinki.fi

Abstract—Robot Operating System (ROS) and its successor
ROS2 have significantly improved the state-of-the-art robot soft-
ware development process. However, even with all the amenities
offered by ROS2 to ease the development, research has shown
that practitioners still encounter development issues making
software a significant bottleneck. Therefore, in this paper, we
discuss ROS-based software development challenges encountered
during the development and identified in the existing literature,
and introduce the new Flexbot framework that seeks to mitigate
some of the identified challenges using model-driven engineering
(MDE).

Index Terms—robot operating system, ROS, ROS2, model-
driven engineering, MDE

I. INTRODUCTION

The development of robotic systems is a complex process.
It often requires a collaborative effort from specialists of
contrasting domains (e.g., mechanical engineering) [1]. To
alleviate the complexity, various solutions to construct such
software have been created throughout the years. One of
the most prominent examples is the Robot Operating System
(ROS) and its successor ROS2 [8]. ROS and ROS2 established
development principles enabling to build the robotic systems
collaboratively and rapidly. However, even with the luxury of
having such a technology at the robot software developer’s dis-
posal, the development remains manual [6], and unsystematic
[9].

Considering that robots are expanding to various domains
[8] and becoming increasingly adapted to our daily needs, it
is important to have the ability to produce software quickly
that satisfies the requirements of its environment. So far,
ROS and ROS2 have created the terms for rapid software
development [5]. However, embracing quality demands con-
tinues to be problematic [9, 13]. Moreover, due to ROS2’s
nature (namely its architecture and design decisions), plain
ROS2 development is also prone to various errors as well
as incompatible and nonrobust designs. Therefore, in this
paper, we introduce Flexbot – a new framework leveraging
model-driven engineering that seeks to increase developer
productivity and deliver high-quality software by addressing
some existing ROS development challenges. The benefits and
main reasons for using MDE in robotics have been studied by
de Araújo Silva et al. in [2]. The main reasons for adopting

MDE in robotics seem to be reducing complexity as well as
improving reusability and variability aspects.

The remaining content of the paper is organized as follows.
In Section II, we introduce ROS software development chal-
lenges that hinder the development process. In Section III,
we introduce the Flexbot framework developed by Atostek
Oy company that acts as an extension to ROS2 and seeks to
assist in developing robot software. Section IV discusses what
benefits it brings. We acknowledge related work regarding the
existing approaches and future directions in Section V. Finally,
we conclude the paper with final remarks in Section VI.

II. DEVELOPMENT CHALLENGES

In this section, we introduce some of the challenges ROS-
based software developers typically encounter. Note that this
is not an exhaustive list but rather based on the development
experiences and reinforced by the available literature.

C1: Software robustness. Most ROS-based systems are
written in C++ and Python programming languages [12],
which are known to be permissive and provide a lot of
freedom to the developer. Although beneficial, the enhanced
capabilities provided by these languages may leave significant
room for error (e.g., memory safety, data races). Such issues
are especially relevant to the robotics domain, where one
of the major requirements is reliability [9], and the systems
are expected to be highly resilient to faults [4]. Unexpected
crashes can cause harm to the environment and potentially
humans if the system is supposed to interact with them.

C2: Development complexity. The development is further
complicated by the wide range of specialists involved in the
process [1]. Because of varying expertise and lesser experience
in software engineering, unanticipated bugs and logical errors
are more likely to be introduced. In ROS, these bugs can
go unnoticed until the system is already running [13]. It is
because ROS might not consider them defects and conceal
the cause of the underlying issues [9]. For example, ROS
enables the developer to adjust how nodes communicate using
Quality of Service (QoS) policies. Each node can be assigned
a policy to adopt a specific behavior based on the system’s
needs. Nonetheless, in case two or more communicating nodes
have distinct policies, there is a risk that messages will not be
delivered from the publisher to the subscriber. [3]. Considering



such circumstances, debugging can become burdensome and
costly [11, 15].

C3: Technical debt. In addition, fixing the potential bugs
later on throughout the life cycle of the project might have a
negative influence on the developer productivity, considering
they are introduced during the early stages of the development
and noticed only later on. This is due to the constant need to
reevaluate and reassess the system instead of embracing good
practices and the quality of software from the very beginning.
Furthermore, considering the distributed ROS-based system
nature, the large selection of third-party packages, and their
integration challenges [13], the development efficiency can be
complicated even further.

C4: Insufficient documentation. Considering less expe-
rienced or new developers participating in the system’s de-
velopment, the information providing a general overview of
the system is more than beneficial. Nonetheless, recently,
Malavolta et al. [10] conducted an observational study where
they investigated 335 open-source ROS-based projects and
revealed that more than half of the inspected projects did not
maintain documentation regarding the architecture. Such lack
of information has the potential to become a bottleneck during
the development.

III. THE FLEXBOT FRAMEWORK

In this section, we introduce Flexbot – a software framework
that can be thought of as an extension to ROS2, which seeks
to mitigate robot software development issues identified in
Section II. Figure 1 illustrates the high-level overview of the
framework. In Flexbot, the user codes the type specification,
which contains type declarations defined by the user, sys-
tem structure specification, and component implementations.
Flexbot then uses the system specification to generate data
flow implementations and interface definitions. The interface
definitions are used by the component implementations, which
are compiled alongside the data flow implementations to
produce the executable.

Flexbot is compatible with ROS2 and extends the idea
of composing the system using nodes from the interprocess
scale to a more fine-grained level (e.g., having a larger
number of simpler nodes). It uses Haskell as its specification
language and Rust as the default implementation language.
The system is described by a system structure specification,
which in essence, is a data structure written in Haskell and
is responsible for listing all the nodes, their connections, and
the data flow. It is important to note that the system structure
specification does not include the implementations of the listed
nodes but rather describes the network structure.

Each node has typed input and output ports that can be
connected to typed many-to-many communication channels.
These abstract ports and channels can be mapped to various
communication mechanisms, such as ROS2 publishers, sub-
scriptions, topics, inter-thread communication channels within
a single process, or even plain FIFO data structures when
transferring data within a single thread. Considering the
fact that Flexbot is implemented in the Rust programming

Code

User

System 

Specification
ImportType Specification

Compile

Dataflow

implementation

Import

Interface 

definitions

Gene
rate

Compile
Component

Implementations

Code

Executable

Generate

Code

Fig. 1. A graph representing the Flexbot framework.

language, it also enables highly efficient and programming
language-specific communication channels, which seek to
minimize the communication overhead that might otherwise
be unavoidable using ROS2 communication channels.

The framework abstracts different communication channel
implementations. In case nodes are written in Flexbot, the
same API is used by nodes to send and receive messages,
regardless of the underlying mechanism. The selection of com-
munication channels for individual nodes is specified at the
specification level. As a result, the same node implementations
can be reused among different applications.

In addition to nodes and channels, the Flexbot system spec-
ification prescribes the mapping of abstract nodes to different
processes and threads. The mapping of nodes to threads can be
changed by modifying the specification only. The specification
is read by the code generator that creates the data flow skeleton
code for each process. It is then possible to generate the
network into a single event loop or split it into several. The
programmer-written code consists of incoming event handlers
that are then included in the appropriate processes.

The event handlers receive their input as call arguments
and produce output by a framework-defined message send
operations (similar to ROS). The framework can then route
these messages to other components because it knows if the
destinations are within the same process/thread or elsewhere.
At the receiving end, the message is handed over to the next
event handler as call arguments.

The code generator also employs static analysis to prevent
common bugs introduced during the development. The gen-
erated code instantiates each node and moves data between
the nodes by implementing an asynchronous I/O event loop,
which listens for inputs from device drivers and inter-process



communication channels. The inputs are passed to input
handler functions, and any produced outputs are forwarded
into local node inputs and, or inter-process channels. The
specification also allows specifying some nodes and processes
as ”external” which means that the framework assumes they
are programmed outside of the Flexbot system, implying that
only communication channels towards them are set up. Such
an approach enables integration to, for example, common
ROS2 components and tooling.

IV. FLEXBOT BENEFITS

Flexbot leverages automation to decrease redundant devel-
opment and reduce the available room for error, thus mitigating
some common robot development challenges.

Developing more robust software (C1, C2). With Flexbot,
ROS2 nodes can be created using the Rust programming
language. The addition of Rust creates the possibility of pre-
venting common programming errors that occur while using
programming languages such as C++ or Python, which are
mainly used in ROS2. Rust mitigates memory or data race
bugs prevalent in C++ by leveraging its ownership system,
as explained in [7]. It is mostly achieved by the compiler,
which prevents compilation in case a violation is detected. As
a result, robot software developers can develop more reliable
software and spend less time debugging undefined behavior.

To reduce the potential shortcomings even further, a system
structure specification can be subject to various checks. For ex-
ample, message type compatibility verification between mes-
sage senders and receivers. Additional checks may include:

• Statically checking that all inputs and outputs are con-
nected or are intentionally left unconnected.

• Statically specifying node input and output relationships
(e.g. each message input produces exactly one output).
In some cases knowing such relationships may allow
message handler execution to be scheduled statically.
Static scheduling improves performance and timing pre-
dictability. It may also uncover programming errors by
failing to produce a valid schedule in the case of a
deadlock or buffer overflow condition.

• Statically checking that there is only one sender in each
channel. Technically, it is possible to have several senders
per channel, but it is a suspicious structure, and a warning
may be issued.

Less technical debt (C3). The foundation of Flexbot’s
features is the global, typed, and machine-readable system
structure specification. It abstracts various parts of the system
and is used to generate a majority of boilerplate code. Having
the system described in a single source of truth increases the
robustness of the system and the productivity of the developer
because to change parts, it is no longer needed to go through
various parts of the source code, but rather change in one
location is sufficient. It makes a system with a large number of
nodes, even up to several hundred, manageable. The individual
nodes can then be made quite simple, which also means
generic, facilitating reuse.

The assignment of nodes to execution threads is done
at the specification level. Each node is only ever executed
by its assigned thread. The node interacts with others only
via channels. Because of these properties, mutexes or other
synchronization devices are typically not needed inside the
nodes. Such an approach helps in avoiding concurrency errors.

The specification also enables the developer to map execu-
tion nodes to specific operating system threads. This mech-
anism allows one to assign small tasks with low latency
requirements to high-priority threads and longer computations
to lower-priority ones. Moving nodes from one thread to
another requires changes in the specification only.

The Flexbot framework is capable of logging messages
between nodes in the same manner as ROS2. These logs
can be used as test inputs for testing individual nodes or
groups of nodes. Flexbot supports generating such test stubs
by configuring the structure specification only.

The framework offers an alternative approach for imple-
menting robot software: while it can improve software devel-
opment productivity and reduce the technical debt, it is still
an effort shift from the usual ROS2 software development.

Understanding the architecture (C4). It is not unusual
for ROS packages to be poorly documented [9]. In Flexbot,
the system structure specification representing the architecture
is translated to a graph for visual inspection. Currently, the
Flexbot tools can generate the specification into GraphML [14]
file, which is always up-to-date because it is automatically
updated at every software build. ROS2, on the other hand, has
the RQt visualization tool to visualize the data flow graph, but
it can only inspect a running ROS2 system.

V. RELATED AND FUTURE WORK

The goal to alleviate development challenges is not new
to ROS-based software. Santos et al. [13] described the
HAROS framework as capable of statically analyzing ROS-
based software and preventing common bugs introduced dur-
ing development. Although HAROS and Flexbot overlap in the
static analysis ideas, both frameworks serve different purposes.
Flexbot seeks to aid in scaffolding the system where various
static analysis checks apply. HAROS, on the other hand, is
concerned only with the analysis.

Considering the issues that arise through manual code
development, Garcia et al. [5] proposed using metamodeling
for ROS in addition to the manual code development to sustain
the possibility of rapid prototyping and leverage model-driven
engineering practices to ensure the system robustness [2]. In
essence, the approach is similar to Flexbot in that it seeks
to improve the quality of the system. However, the proposed
approach targets ROS systems, whereas Flexbot focuses solely
on ROS2. Nonetheless, the authors indicate ROS2 support as
their future goal [6].

As for future research work, we will seek to demonstrate a
use case leveraging the Flexbot framework and show how it
manages to maintain interoperability with ROS2. As a result,
such work would provide insight into both the framework’s
benefits and shortcomings, and how it accomplishes to mitigate



challenges identified in Section II. In addition, since the
communication in Flexbot is based on abstract channels that
excel in highly scalable performance, we would like to provide
empirical data elaborating on how Flexbot’s means of com-
munication compared to those of ROS2. To elaborate, if both
ends of a channel are written in Rust, then the framework can
generate a native Rust channel implementation between them.
If they are different (e.g., one end in Rust and the other in
Python), then ROS2 communication can be used instead. The
channel implementation can be chosen on a per-channel basis
from the structure specification. Tightly coupled nodes within
the same process and thread can transfer data by a language-
native reference-passing FIFO queue without serialization or
synchronization. At the other end of the spectrum, ROS2 topics
can be used with all the associated benefits and costs.

VI. CONCLUSIONS

In this paper, we discussed what issues hinder the ROS-
based software development process based on the development
experiences and available literature and introduced the Flexbot
framework that seeks to increase robot software developer
productivity and mitigate the identified challenges. The pre-
sented framework is most certainly not a universal solution
to all the issues of the robotics domain. However, it offers a
leap toward better software engineering practices alleviating
developers from time-consuming tasks and enabling them to
reason about the architecture of a system more conveniently.
As a part of our future work, we consider constructing a use
case and performing an in-depth analysis and evaluation that
would describe to what extent Flexbot alleviates the identified
challenges.

Acknowledgments

This work was supported by Business Finland.

REFERENCES

[1] Giuseppina Lucia Casalaro et al. “Model-driven engi-
neering for mobile robotic systems: a systematic map-
ping study”. In: Software and Systems Modeling (2021),
pp. 1–31.

[2] Edson de Araújo Silva et al. “A survey of Model Driven
Engineering in robotics”. In: Journal of Computer Lan-
guages 62 (2021), p. 101021. ISSN: 2590-1184. DOI:
https://doi.org/10.1016/j.cola.2020.101021.

[3] ROS2 Documentation. About Quality of Service set-
tings. URL: https:/ /docs.ros.org/en/rolling/Concepts/
About-Quality-of-Service-Settings.html.

[4] Sergio Garcıa et al. “Robotics Software Engineering:
A Perspective from the Service Robotics Domain”. In:
Proceedings of the 28th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ESEC/FSE
2020. Virtual Event, USA: Association for Computing
Machinery, 2020, pp. 593–604. DOI: 10.1145/3368089.
3409743.

[5] Nadia Hammoudeh Garcia et al. “Bootstrapping MDE
Development from ROS Manual Code - Part 1: Meta-
modeling”. In: 2019 Third IEEE International Confer-
ence on Robotic Computing (IRC). 2019, pp. 329–336.
DOI: 10.1109/IRC.2019.00060.

[6] Nadia Hammoudeh Garcıa et al. “Bootstrapping MDE
development from ROS manual code: Part 2—Model
generation and leveraging models at runtime”. In: Soft-
ware and Systems Modeling 20.6 (2021), pp. 2047–
2070.

[7] Ralf Jung et al. “Safe Systems Programming in Rust”.
In: Commun. ACM 64.4 (Mar. 2021), pp. 144–152.
ISSN: 0001-0782. DOI: 10.1145/3418295.

[8] Steven Macenski et al. “Robot Operating System 2:
Design, architecture, and uses in the wild”. In: Sci-
ence Robotics 7.66 (2022), eabm6074. DOI: 10.1126/
scirobotics.abm6074.

[9] Ivano Malavolta et al. “How do you Architect your
Robots? State of the Practice and Guidelines for ROS-
based Systems”. In: 2020 IEEE/ACM 42nd Interna-
tional Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). 2020, pp. 31–40.

[10] Ivano Malavolta et al. “Mining guidelines for archi-
tecting robotics software”. In: Journal of Systems and
Software 178 (2021), p. 110969. ISSN: 0164-1212. DOI:
https://doi.org/10.1016/j.jss.2021.110969.

[11] Samuel Parra, Sven Schneider, and Nico
Hochgeschwender. “Specifying QoS Requirements and
Capabilities for Component-Based Robot Software”.
In: 2021 IEEE/ACM 3rd International Workshop
on Robotics Software Engineering (RoSE). 2021,
pp. 29–36. DOI: 10.1109/RoSE52553.2021.00012.

[12] Morgan Quigley et al. “ROS: an open-source Robot
Operating System”. In: ICRA workshop on open source
software. 3.2. Kobe, Japan. 2009, p. 5.

[13] André Santos, Alcino Cunha, and Nuno Macedo.
“Property-Based Testing for the Robot Operating Sys-
tem”. In: Proceedings of the 9th ACM SIGSOFT Inter-
national Workshop on Automating TEST Case Design,
Selection, and Evaluation. New York, NY, USA: As-
sociation for Computing Machinery, 2018, pp. 56–62.
ISBN: 9781450360531.

[14] GraphML Team. The GraphML File Format. URL: http:
//graphml.graphdrawing.org/.

[15] Thomas Witte and Matthias Tichy. “Checking Con-
sistency of Robot Software Architectures in ROS”.
In: 2018 IEEE/ACM 1st International Workshop on
Robotics Software Engineering (RoSE). 2018, pp. 1–8.


