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Abstract—ROS-based robotic applications are becoming in-
creasingly common in various different application domains,
performing diverse tasks. Examples include autonomous vehicles,
small unmanned systems, as well as industrial applications of
Cyber-Physical Production Systems. What all these systems have
in common is their tight integration between hardware and
software components, and close interactions with humans, e.g.,
on a shop floor, or autonomously driving robots as part of a
warehouse system. This, in turn, requires monitoring the behavior
of the system at runtime and ensuring that it behaves according to
its specified requirements. However, establishing and maintaining
runtime monitoring support is a non-trivial task, requiring
significant up-front investment and extensive domain knowledge.
To alleviate this problem, in this paper, we present ROMoSu,
a flexible runtime monitoring framework for ROS-based sys-
tems that allows defining multiple scenarios, or application-
specific configurations, taking into account different monitoring
needs, and provides tool support for creating, maintaining, and
managing configurations at runtime. As part of our evaluation,
we have conducted experiments with three different use cases,
of both physical and simulated applications. Results confirm
that ROMoSu can be successfully used to create monitoring
configurations with little effort, create efficient monitors and
perform constraint checks based on the collected runtime data.

Index Terms—ROS, Cyber-Physical Systems, Runtime Moni-
toring

I. INTRODUCTION

ROS-based robotic applications have gained significant pop-
ularity in a wide variety of different domains, ranging from
robotic applications to autonomous vehicles [1] and industrial
applications of Cyber-Physical Production Systems [2]. What
most Cyber-Physical Systems (CPS) have in common is their
tight integration between hardware and software components,
and their use in the presence of humans. For example, robotic
arms operating as part of a shop floor automation system,
or autonomously driving robots as part of a warehouse sys-
tem [3]. This in turn requires various different operational
aspects, such as safety, to be taken into consideration, to ensure
that these systems behave as intended while performing their
tasks. In this context, Runtime Monitoring has been introduced
as a means for monitoring the behavior of a system at runtime,
determining its correct and safe behavior, and detecting devi-
ations from specified requirements by performing constraint
checks on the collected runtime information.

The development of a software system that incorporates
all these aspects, however, is not trivial, and establishing an
effective runtime monitoring framework requires an adequate
level of knowledge about the System under Monitoring’s
(SuM) structure (sensors, actuators, software versions), its
properties, and technologies. As part of a literature review [4],
we analyzed over 350 runtime monitoring approaches used
for different types of systems, and application domains and
found that these approaches typically require a significant up-
front investment to set up a monitoring framework, define
constraints, and perform runtime checks. Therefore, developers
are often forced to invest a significant effort, to adequately un-
derstand the SuM’s specific characteristics and structure before
they can establish solid runtime monitors. The additional effect
of this high level of knowledge required is that novices, in
particular, initially struggle with the development, and learning
a new (domain-specific) technology to establish the monitoring
can already become an overwhelming task [5].

Many modern robot applications rely on the Robot Operat-
ing System (ROS) [6] which provides a platform for a wide
variety of different applications and systems and is one of the
most popular frameworks for robotic applications, as well as
autonomous systems. Monitoring applications built on top of
ROS also require capabilities not only for collecting data, but
for performing a subsequent analysis, and checking functional
behavior, quality, or safety constraints.

To address these challenges, and provide support for run-
time monitoring, in this paper we introduce ROMoSu (ROS
Monitoring Support). ROMoSu enables users to easily create
monitoring configurations and establish monitors for ROS
applications in a straightforward fashion, independent of the
SuM’s structure and hardware components and with little prior
knowledge of the system and its specific structure required.
The work described in this paper significantly extends our
previous work [7] where we collected challenges and derived
capabilities for a monitoring framework. This includes a
detailed architecture of our framework, a prototype implemen-
tation as well as an evaluation of ROMoSu.

The remainder of this paper is organized as follows: In
Section II we present a motivating example and revisit the
challenges associated with runtime monitoring. In Section III
we present ROMoSu, our flexible runtime monitoring frame-
work for ROS-based systems and describe its application



and prototype implementation. As part of our evaluation, in
Section IV, we apply ROMoSu to three different types of ROS-
based systems (two in the Gazebo simulation environment,
and one using physical TurtleBot3 robots). Finally, we discuss
related work in Section V and future work and conclusions in
Section VI.

II. CHALLENGES AND MOTIVATING EXAMPLE

ROS-based systems have become the de facto standard for
robotic applications and are used across various domains [8].
ROS is used in the context of Cyber-Physical Production
Systems (CPPS) [9], [10], in the automotive domain [11], [12]
or in agricultural robotics [13]. However, while ROS is fre-
quently used in industry and research, as part of our previous
work [7] with ROS-based and robotic applications, we have
discovered the lack of generic runtime monitoring support and
have identified six challenges (C1-C6) specifically pertaining
to runtime monitoring. These challenges reflect concrete pain
points when it comes to (1) establishing runtime monitoring
support for ROS-based applications and (2) maintaining and
updating the runtime monitors when new monitoring needs
arise, or when the underlying SuM changes and evolves.
Table I provides a brief summary of the challenges and
resulting requirements for an efficient ROS runtime monitoring
solution.

To exemplify these challenges and motivate the development
of our ROMoSu framework, throughout the paper we use
examples of Unmanned Aerial Vehicles (UAVs) frequently
used in domains such as first response operations [14] or
transportation and logistics [15]. UAVs employ ROS in a
variety of scenarios [16]. For example, in a search-and-rescue
operation, UAVs may be equipped with a gimbal and camera
for searching for missing or drowning victims, while others
may be equipped with a transportation device to drop flotation
devices or medical supplies. Therefore, UAV systems involve
a range of equipment, sensors, and actuators to perform their
tasks as efficiently as possible that need to be monitored at run-
time. Furthermore, software updates, or updates of the flight
controller are deployed, resulting in structural changes in the
system and leading to an evolving ecosystem. Keeping track
of all these changes (especially in larger industrial contexts)
is not feasible. Therefore, novices as well as domain experts
profit from an initial overview of a system structure (cf. C1)
to establish a co-evolving monitoring solution. Additionally, a
monitoring solution specifically tailored to one type of UAV
becomes cumbersome to maintain and variants need to be
developed and deployed for different hardware versions. As a
result, a monitoring solution must be able to handle a certain
amount of flexibility (cf. C2).

UAVs provide numerous kinds of data, from initial startup
checks (e.g., if a sufficient number of satellites are avail-
able), to distance measurements and rotor data. Brute-force
monitoring of all the provided information requires significant
resources (bandwidth, or computational) which may result in
delays and even affect the SuM itself. Monitoring only a subset
of properties (cf. C3) is crucial to ensure the correct behavior

Chall. Description & Monitoring Requirements

C1 Initial
Overview

Provisioning of initial overview of the system structure;
create an initial overview of the probably unknown
system structure; support for automated collection of
monitoring properties.

C2 Flexbility Configure diverse monitoring needs; handle different
(types of) data depending on their software version and
hardware equipment (sensors, actuators, etc.).

C3 Monitoring
of Subsets

Only a subset of system properties are likely to be
monitored; not all data is of equal importance due to en-
vironmental circumstances, limited resources constrain
runtime data collection.

C4 Adaptive
Collection
& Analysis

Properties need to be collected and analyzed with
different frequencies; monitoring framework must adapt
to the SuM’s environment and users monitoring needs.

C5 Constraint
Checks

Data must not only be collected but subsequently pro-
cessed and analyzed, different domains/systems require
diverse constraint checks that cover specified types of
requirements.

C6 Insights The outcome of the runtime monitoring data and ser-
vices are accessible to the user; updates of the moni-
toring configuration when needed.

TABLE I: Overview of monitoring challenges for ROS appli-
cations and resulting Requirements [7].

of the system. Additionally, for example, in a scenario with
multiple UAVs operating in a restricted area, the distance to the
next UAV plays a pivotal role to avoid collisions. In a single
UAV scenario, the importance might be significantly lower,
motivating the need for adaptive data collection (cf. C4) as data
should be collected and analyzed, e.g., in the form of constraint
checks (cf. C5) in adequate frequencies with respect to their
environmental circumstances. While executing missions with
a UAV, the operators conducting the mission need insights
(cf. C6) on the UAV data currently gathered and monitored
and respond to possible problems as they arise.

III. THE ROMOSU FRAMEWORK

To address the aforementioned requirements, and to provide
extended support for creating and maintaining monitoring
configurations, ROMoSu provides support for the two main
phases of runtime monitoring: first, the Monitoring Configu-
ration phase (CT) where the user retrieves details about the
system and creates one or more monitoring configurations, and
second, at runtime while the system is performing its tasks,
the Monitoring Data Collection phase (MT), data is collected
and constraints are evaluated.

ROMoSu uses two main artifacts throughout these two
phases. First, a Mon-Config, representing a monitoring con-
figuration containing information about the publishing type
and SuM, as well as a selection of topics (and sub-topics)
that should be monitored, alongside frequencies specifying
how often the collected data should be published by the
framework. We distinguish between two publishing types:
complex or simple. The former hereby preserves the original
hierarchical topic structure provided by ROS, whereas the
latter automatically flattens the nested topics and adds all
of the monitoring data to the root topic when published.



Depending on the use case (and constraint checks that might
be performed on the data) this gives the users the option to
simplify their configurations if desired, or preserve the original
ROS structure. Additionally, a SuM-Type specifies the types
of systems that ought to be monitored with the framework, and
where configurations exist. The mapping between a SuM-Type
and Mon-Config is later on used to activate monitoring (i.e.,
instantiate a configuration at runtime) and further to make
monitoring configurations reusable.

In the following, we provide a comprehensive overview of
the architecture and component parts of ROMoSu and how
both, the Mon-Configs and SuM-Types are created and used.

A. Framework Overview

An overview of the architecture is presented in Fig. 1.
ROMoSu consists of four main parts: the Core components
responsible for providing ROS data during the configuration
and performing the actual runtime monitoring; the Admin UI

used in the Configuration Phase for creating and maintaining
Mon-Configs and SuM-Types; the Dashboard used during the
actual Monitoring Data Collection Phase; and finally, external
Services that allow to easily extend the framework with new
capabilities and access the collected ROS data.
• Framework Core: The framework’s core is divided into
seven main components. The Connection Interface is
used to communicate with components outside of the core
and exchange data related to configuring the framework, Mon-
Configs, and SuM-Types. The API Adapter hereby serves as
the intermediary between the core and the connection inter-
face, offering functions to serialize/deserialize data from other
components. In addition, it serves as the connection point to
the Config-Database, where all created configurations and
SuM-Types are stored. Additionally, the ROS Adaptation

Manager provides the business logic for starting and stopping
ROS runtime monitoring based on the currently selected
configurations, and triggers modules of the Runtime Data

Broker to forward data with the specified frequency. To
achieve this, the ROS Adaptation Manager caches the raw
data provided by the ROS Connector in a Runtime Cache

and retrieves the data again when needed. Data from the SuM
is collected using the ROS Connector by subscribing to the
desired ROS topics. and is subsequently distributed via the
Runtime Data Broker.
• Admin User Interface: The Admin UI provides various
UIs and editors to create and maintain artifacts including the
SuM-Type-Editor. SuM-Types may be created, updated, and
deleted with this component. The Configuration-Creator

is responsible for allowing users to get an initial overview of
the SuM’s data structure and its supported monitoring topics
(cf. C1 and C2). Furthermore, the users can specify the desired
(sub-) topics (cf. C3), monitoring frequencies (cf. C4) and the
SuM-Type it belongs to. The Config-Editor provides a user
interface for managing monitoring configurations that have
already been created, and updating and deleting topics and
frequencies. Finally, the Monitoring Initializer sends

activation triggers in the form of a selected monitoring con-
figuration to start collecting monitoring data.
• Dashboard: The ROMoSu Dashboard UI consists of a
Monitoring Supervisor and Data Explorer providing
information about the status of active monitoring instances.
Furthermore, the Data Explorer provides additional infor-
mation about the actual monitoring data that is currently
collected and distributed. This allows the user to confirm the
correctness of the ongoing runtime monitoring behavior, and
to gain insights about the system status (cf. C6).
• Services: ROMoSu follows a separation of concerns
paradigm, allowing to connect external services via the Run-
time Broker and tailoring the framework to specific needs,
e.g. by attaching different types of constraint engines or
databases for persisting runtime data. So far, we focus on
two main services: Runtime Data Persistence, which is
responsible for persisting the collected runtime data for a
post-processing analysis, and Runtime Data Validation,
which checks whether certain domain-dependent constraints
have been violated during runtime (cf. C5). However, addi-
tional services such as data aggregation or processing services
might be added to receive data via the Runtime Broker.

B. Applying ROMoSu

The process of configuration and subsequent monitor-
ing and analysis follows three main process steps. First, a
Mon-Config needs to be created using the Config-Editor
(Step 1). Since ROS is topic-based, namespaces help distin-
guish different systems in a multi-system setting. For instance,
in a setting in which three identical UAV models are operating
simultaneously, their topics could use uav_n as a root topic to
distinguish the identical published data, where n is the number
of the respective UAV (here, 1-3). Even when just operating
with a single system, it is considered to be best practice to
assign namespaces to maintain a proper topic hierarchy [17].

The Config-Editor herby serves as the main user inter-
face in this step, providing a list of possible ROS namespaces
which corresponds to a single ROS system to be monitored.
Next, the user is able to inspect the selected system structure.
One can for example see at one glimpse, that a ROS Command
Velocity Message consists of two 3D vectors (x, y and z), one
for the linear and one for the angular velocity (cf Fig. 2).
Besides the name of the sub-topics, the respective data types
are also provided. This allows making an informed decision on
what configuration parameters should be monitored by (sub-)
topics and respective frequencies.

Once a configuration has been created, the second step
uses the Monitoring Initializer to activate the actual runtime
monitoring, data collection, and analysis (Step 2). Again, a
namespace needs to be selected which should be monitored,
and a dedicated SuM-Type needs to be selected which in turn
lets the user select one of the previously created configurations
for this particular type. This makes it possible to specify
multiple different configurations (e.g., for different execution
scenarios) for a SuM-Type in advance and then initialize the
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Fig. 1: Abstract overview of ROMoSu’s component structure and the four main components. (The CT/MT circles refer to the
phases of ROMoSu, when the respective component is used).

desired configuration on demand (with specific topics and
frequencies as part of the configuration).

Finally, to make use of the collected data, diverse services
can be attached and used (Step 3). Note, in contrast to Step 1
and Step 2 these steps do not need to be executed in the pre-
sented order. As part of our current implementation (cf. Sec-
tion IV) we provide 2 specific examples (data persistence and
runtime constraint checking) of services using the runtime
data provided by the Runtime Data Broker. By using a
Runtime Data Validation component, constraint checks
can be performed at runtime. Finally, by deploying a Runtime
Data Persistence, runtime data coming from the Runtime
Data Broker can be persisted for a post-mortem analysis. We
provide further details about currently available services in
Section IV as part of our prototype implementation and eval-
uation. Additionally, users can interact with the Dashboard

UI to supervise ongoing monitoring instances and to explore
data collected. This, for example, includes the possibility
to inspect metadata (selected namespaces/ROS systems, time
when monitoring was initiated, assigned SuM-Types, etc.)
and also terminate an active monitoring configuration to halt
further data collection. Furthermore, to perform manual data
inspection and validation, it is possible to explore recent data
collected by ROMoSu with the Data Explorer.

C. Prototype Implementation

Based on the described architecture, we have implemented a
prototype of our framework which we subsequently use for our
experimental evaluation (Section IV). The technology stack
of the core and service components comprises an Angular
frontend, Django backend, and SQLite and InfluxDB databases
to persist the Mon-Configs, SuM-Types, and runtime data.
• User Interface: All UI components (Dashboard and Admin
UI) are realized using individual views part of an Angular
application. For instance, the Config-Editor (cf. Fig. 2) is
designed as a four-steps wizard, enabling the user to easily

create new configurations via the user interface. The other
components follow the same principle providing capabilities
for managing configurations and initiating/stopping data col-
lection.

• Framework Core: The frontend applications use a RESTful
API provided by the Django framework [18] (Connection
Interface) to communicate with the server and the ROS Adap-
tation Manager that handles runtime data. When a new con-
figuration is activated, the Adaptation Manager dynamically
instantiates a multi-threaded environment (one per topic) to
handle the individual monitoring frequencies. The connection
to the ROS application (via the ROS Connector) is imple-
mented using roslibpy, an open-source Python-based mid-
dleware. We leverage its functions for topic subscriptions and
gathering meta-information about the ROS systems currently
connected. The Runtime Data Broker is implemented using
a Mosquitto MQTT broker that, similar to ROS itself, uses
a publish-subscribe-based protocol, commonly used for high-
performance message transmission in the IoT domain. Data
is published in a JSON format and depends on the selected
publish type, either on the root topic or nested subtopics.

• Services: As proof of concept, we implemented a persistence
service using InfluxDB, a time series database running in a
separate Docker container receiving data via the Runtime Data
Broker. For runtime validation, we use Esper [19], a Complex
Event Processing (CEP) engine. This allows us to not only
check static property values (for example, if a value is below
or above a certain threshold), but also temporal checks, for
example, if certain conditions are violated over time (e.g., did
the average value of the last ten seconds exceed a threshold).
We provide further examples of constraints in our evaluation
(cf. Section IV). Same as the persistence service, the validation
service operates as a completely independent component im-
plemented in Java, receiving data via the Runtime Data Broker.



IV. EXPERIMENTAL EVALUATION

To demonstrate ROMoSu’s applicability to real-world ap-
plications, and its capabilities for defining monitoring con-
figurations and performing runtime monitoring, we selected
three use cases of ROS-based applications. The focus of the
evaluation was to first to demonstrate general feasibility and
applicability, and second to assess the performance of our ap-
proach when performing data collection and constraint checks.
We, therefore, explore the following research questions:
RQ1: Can ROMoSu be used to create monitoring configu-
rations for diverse systems and perform subsequent analysis
tasks, and what is the effort required?
RQ2: Can ROMoSu be used efficiently to collect runtime data
and perform subsequent analysis tasks?

A. Evaluation Setup
With the first research question, the goal was to evaluate

the general feasibility of our approach, and applicability of
ROMoSu to different ROS-based systems. The first system
(GTB) is a simulation of TurtleBot3 [20] robots using the ROS
standard simulation software Gazebo [21]. A TurtleBot is a
small ROS-based mobile robot used frequently for prototyping
in research and education. This first scenario used Gazebo’s
multi-robot simulation to spawn three TurtleBot models. The
data provided by the simulated robots (such as odometry,
system status, etc.) are then used as input for the evaluation,
creation of monitoring configuration, and subsequent analysis.

The second scenario (HTB) used ROMoSu in a similar ex-
ample, however, instead of a simulation environment, utilizing
physical TurtleBot3 robots to demonstrate that the framework
can handle both simulated and “real” robotic applications. In
contrast to the simulation, this use case provided a wider
variety of ROS topics including information about the used
firmware versions in the hardware, battery status, and diag-
nostics data from sensors and actuators.

Finally, for the last case (GMX) we selected an en-
tirely different ROS application, a Gazebo simulation of the
OpenMANIPULATOR-X [22], an open software, open hard-
ware, and OpenCR (embedded board) robotics gripper arm
which is also frequently used in research context [23].

To answer RQ1, we used our prototype implementation and
generated five Mon-Configs for each scenario with signifi-
cantly different complexity, meaning the number of topics se-
lected, the frequencies specified and the publish type selected.
In a second step (RQ2), we wanted to ensure that ROMoSu can
efficiently handle monitoring data and operate under realistic
conditions in both simulated and physical environments. For
this purpose, we focused on three aspects: (1) comparison of
the potential reduction in event data; (2) receive transmit time
(RTT) and effective processing time (EPT); and (3) suitability
of the constraint validation service.

RTT measures the time from the arrival of a ROS message
until it is forwarded by the Runtime Data Broker, i.e., the total
time the data rests in the system. However, it is important to
note that this metric is also dependent on the frequency config-
uration and the native ROS internal publishing interval of the

CST Description Type NCST
[#]

GTB1 Movement Speed Limit: For safety reasons, the bot
must not move faster than 0.35 m/s.

S 13

GTB2 Obstacle Avoidance: The bot must maintain a
minimum distance of 35 cm to an object, as
detected by the LiDAR unit.

S 34

GTB3 Navigation Error: To maintain accuracy during
navigation, an average of 30 of the 360 LaserScan
angle bins must detect a distance value over 10 s.

T 54

HTB1 Speed Limit: To maintain accuracy during naviga-
tion, the bot must not move faster than 0.35 m/s.

S 30

HTB2 Obstacle Avoidance: The bot must maintain a
minimum distance of 35 cm from an object, as
detected by the LiDAR unit.

S 69

HTB3 Speed Reduction: When below 25 % battery level,
the avg speed must not exceed 0.1 m/s.

T 21

GMX1 Joint Effort Limit: The consumption of each DY-
NAMIXEL joint effort must not exceed 5.0 Nm.

S 45

GMX2 Gripper Range Limit: The gripper must not oper-
ate below the robot’s root surface (z > 0.0).

S 31

GMX3 Gripper Opening: To ensure accuracy, after mov-
ing, the gripper must not open for 2 s.

T 27

TABLE II: Constraints for static property value checks (S) and
temporal checks (T) used in the evaluation. NCST describes
the mean violations reported in our seeded runs.

respective topics, but still provides an indication of whether
significant delays occur within the framework. Therefore, we
also measured the effective processing time (EPT), which
corresponds to the time ROMoSu takes to save a newly arrived
topic from ROS in the cache plus the time it takes to again
retrieve the event from cache and forward it to the MQTT
Broker. Finally, to assess the Runtime Data Validation service,
we seeded random “errors” into the published data stream to
check whether constraint checks are correctly triggered and
violations are detected by the constraint engine. For each
use case, we selected three constraints based on the available
topics provided by the simulation or hardware component.

For each measurement, for each use case, we performed
three evaluation runs (i.e., 45 runs in total) with each lasting
three minutes and report mean values.

B. Results

For each of the three use cases, we performed the steps
described in Section III-B and then performed our evaluation
runs.
RQ1: As a precursor, we connected the ROS systems to the
roscore instance and started the respective ROS application.
Using ROMoSu for creating two SuM-Types (one for GMX
and one for HTB/GTB) was a straightforward task, only
requiring the respective user interface (SuM-Type Editor). The
SuM-Type created for the GTB could then also be reused for
the HTB as all topics provided by the GTB are also covered
by the HTB. For creating the monitoring configurations, we
again used the provided user interface. ROMoSu provides high
flexibility with regard to different SuM, topic structures, and
topics. In the GTB use case, three different namespaces (one
per TurtleBot) were automatically created. In contrast, for the



Fig. 2: ROMoSu UI for creating Mon-Configs

GMX use case, only a single namespace for the device was
specified, with a total number of 11 unique topics.

Additionally, frequencies were specified for each root topic,
and data was published later on accordingly. The overall
specification process of a single Mon-Config took less than
3 minutes (performed by one author of the paper). However,
this is highly dependent on the time spent on analyzing the
structure and deciding which data to be analyzed). Once the
configurations were created, we used the Monitoring Initializer
to activate the defined Monitoring-Configs. The activation
wizard only required the selection of a namespace, SuM-
Type, and Mon-Config to activate the runtime monitoring and
establish monitors. The total time effort for creating a Mon-
Config and collecting runtime data with the Mon-Config took
less than 10 minutes.

Upon activation, runtime data was collected and stored in
the InfluxDB with the dashboard providing information about
the ongoing runtime collection. In order to validate that the
requested Mon-Config was properly configured and provided
the specified data, the data explorer was used to inspect the
runtime data. An overview of the checked constraints in our
evaluation can be found in Table II. We distinguish constraints
into two types: Static value checks verify that certain values
should not exceed/fall below a certain threshold. They are
time-independent in the sense that these checks are performed
on every single event processed by the engine. Temporal
checks on the other hand check thresholds over a specified
time. These constraints tend to be more complex as they
require multiple events to be checked. For example, Turetle-
Bots use nearby (detected) objects to navigate. Inaccurate
positioning and navigation may occur if the distance exceeds
the LaserScan’s sensor sensitivity. Determining the average
number of LaserScan bins over a 10-second period, GTB3 is
used to alert the operator that navigation may not function as
intended if the constraint is violated.

In summary, we were able to create a total number of 15
configurations (five per use case) with different topics to be
monitored and different frequencies with which the data is
collected and forwarded by our framework. ROMoSu itself

supplied all the information required to set up the runtime
monitoring. To choose which topics are offered and may
be monitored, no other tools (such as the ROS rqt Topic
Monitor) were required. Answering RQ1, we can conclude
that ROMoSu can be used to easily create monitoring config-
urations for different kinds of systems, topics, frequencies, and
monitoring needs. When needed, configurations can be easily
selected and activated and the desired data is automatically
forwarded to the Runtime Data Broker, readily available for
the external services to be used.
RQ2: An overview of the potential event reduction results can
be found in Table III. For the Brute-Force Monitoring runs we
selected all topics which were provided by the ROS systems
(e.g., 13 topics for HTB) with their native frequencies. For
the selective monitoring, we specified a Mon-Config which
is needed to perform the constraint checks and frequencies
based on the assumption that non-safety critical constraints,
for example, do not need to be checked 50 times a second.
For HTB, three topics are required to support the constraint
checks and as a consequence, only three of the 13 topics have
been selected for selective monitoring. In each of the three use
cases, ROMoSu was able to significantly reduce the number
of messages. The highest decrease has been recorded for GTB
– 4,015 messages less than with the brute-force monitoring
which is equivalent to a reduction of 95.48 %.

Performance-related results are shown in Table III. Empty
topics that do not contain data were omitted from the exami-
nation to prevent distortion of the measurements (4 topics of
GMX were removed). Furthermore, to analyze the influence of
data types on the performance metrics, we monitored multiple
subtopics with different data types of the same root topic (5
additional topics by HTB). While the RTT values for GTB and
GMX do not substantially differ from each other (difference
of 48 ms), the RTT value of HTB is significantly higher
(907 ms). This difference can be primarily attributed to the
ROS-specific publishing times, as the timeliness of the data
is dependent on this publishing interval. The distribution of
HTB RTT values are displayed in Fig. 3a. The median values
of the firmware_version is almost 1 second higher than
the odom topics. This is due to the fact that per default the
maximum publishing rate of the firmware_version topic
is 1 Hz, while the odom topic is published at a maximum
default rate of 30 Hz. These rates are further (negatively)
influenced by other factors, such as battery health, CPU usage
and bandwidth. We also found that data types seem not to
influence the processing time. The results for the EPT show
that the influence of ROMoSu on the delay is not significant
since the total average EPT of ROMoSu is 0.27 ms considered
noticeably low for our given application use cases.

Integrating the published data into the stand-alone Java-
based constraint engine was simple. We found that the
constraint engine detected constraint violations as expected.
(cf. Table II). The NCST values in the table differ in their
amount for two reasons, first, the violations depend not only
on a simple randomness function but also on the publishing
frequency specified in the Mon-Config. While GTB2 and



Brute-Force Selective Efficiency
System Topics

[#]
Msgs

[#]
Topics

[#]
Msgs

[#]
RTT
[ms]

EPT
[ms]

GTB 5 4,205 2 190 395 0.31
HTB 13 1,462 3 175 907 0.22
GMX 15 1,358 5 202 443 0.29

TABLE III: Evaluation results of ROMoSu (mean values)

(a) RTT data visualization

(b) EPT data visualization

Fig. 3: RTT and EPT boxplots of HTB
HTB1 had an equal publishing frequency and a 25 % chance
of publishing error data, the frequency of GTB1 was lower,
resulting in fewer constraint violations. In conclusion, the
runtime data validation behaved as intended and, therefore,
ROMoSu is capable of supplying ROS runtime data to con-
straint engines and performing runtime checks.

To answer RQ2, ROMoSu can be used for an efficient
collection of ROS runtime data. The discussed measurements
yielded good results, with the EPT in particular being deemed
effective. A later analysis employing a constraint engine
demonstrated the viability of integrating ROMoSu data with
external services.

C. Discussion

One aspect that turned out to be highly beneficial was
the ability to create both complex, as well as simple Mon-
Configs. Depending on the monitoring scope (i.e., the number
of selected topics to be monitored, either the former or the
latter can be selected by the user). When only few topics are
monitored, combining them in a single JSON element greatly
reduces the complexity and effort for writing subsequent CEP
Esper constraints, whereas for a more exhaustive monitoring
configuration preserving hierarchical structure may increase
complexity, however, results in a more “logical” structuring of
the monitoring data. Since ROMoSu operates independently of
the underlying system, configurations can also be changed and
updated independently even switching configurations while
running the Gazebo simulations, and if so desired even mon-
itoring the Gazebo simulation environment itself, as it also
publishes its metadata via ROS topics.

D. Threats to Validity

Concerning generalizability of our results and findings, we
have applied our framework in the context of three different
use cases. While the first and second use case both use
TurtleBot3 they differ in terms of available topics and collected
data. Furthermore, for the third use case, we have selected
a new system with an entirely different topic structure. To
further assess the generalizability and broader applicability of
our ROMoSu framework, additional case studies are required.

The initial implementation and evaluation runs use a limited
number of topics and constraints, however, we have not
observed any degradation over time when executing scenarios
for a longer amount of time. Furthermore, we are using proven,
off-the-shelf components for message transportation (MQTT)
and constraint checking (CEP) and we are therefore confident
that ROMoSu can handle a larger number of topics and
amount of events. A more exhaustive evaluation is required
to further evaluate the scalability with regard to messages
and constraint checks. So far, we have used ROMoSu only
internally, for creating monitoring configurations. However,
we found that for all use cases, we were able to represent
and monitor all specified topics and constraints. To further
asses the usability and usefulness of our framework, we are
planning on conducting a user study specifically focusing on
the various steps in the defined process.

V. RELATED WORK

A wide variety of different runtime monitoring solutions
have been proposed, providing various types of monitors,
constraint checks, and visualization options [24]. Particu-
larly, in the domain of ROS-based applications, several ap-
proaches provide support for monitoring and verification of
ROS topics and different types of constraints. For example,
Ferrando et al. [25] present ROSMonitoring, a framework
for runtime verification of ROS-based robotic applications.
Similar to our approach, their work focuses on automated
verification of the communication between ROS nodes by
monitoring topics and checking against formal properties
expressed. Huang et al. [26] present ROSRV, a runtime verifi-
cation framework focusing on monitoring safety and security
properties for robot applications.

Similar work by Adam et al. [27] and Shivakumar et al. [28]
uses Domain-Specific Languages (DSL) to declaratively define
safety-related rules and run-time assurance safety guarantees.
While such a DSL could serve as an extension for our Mon-
Configs to declaratively specify configurations, in our work
with ROMoSu, we focus on the monitoring level, providing
capabilities for adaptive monitoring (frequency) and additional
external services that can perform diverse constraint checks.

Focusing on QoS requirements, Parra et al. [29] present
a DSL for defining communication QoS profiles for ROS 2
applications. While their approach also provides support for
monitoring topics, the main purpose is to check and en-
sure certain quality metrics for topics, rather than an over-
all monitoring framework. Witte and Tichy [30] present a
communication pattern and library for provenance tracking of



ROS 2 messages, with the main purpose of linking values
to their origin across multiple nodes. Mengthi et al. [31]
present PsALM, a toolchain supporting the development of
dependable robotic missions. While their approach provides
formal specifications and checks for robotic missions using
LTL and CTL temporal logic, their focus is not on monitoring,
but rather on overall mission specification and execution.

VI. CONCLUSION

In this paper, we have presented ROMoSu, a flexible
monitoring framework for ROS-based applications. ROMoSu
consists of UIs for inspecting the SuM, creating monitoring
configurations, and exploring runtime data; a core responsible
for configuration management and data collection; as well as
additional services. As part of our prototype implementation,
we have implemented services for data persistence using
a time series database and complex event processing for
constraint checking. Our evaluation – using three different,
both simulated and real physical application use cases – has
demonstrated that ROMoSu is capable of capturing relevant
system properties and establishing efficient runtime monitoring
support. As part of our future work, we are working on
extending our approach with additional services, and more
diverse constraint checks. Additionally, we intend to provide
adaptive configuration switching not just during the configu-
ration phase, but also at runtime (e.g., configuration switch
for a UAV during flight vs. on the ground). We are further
committed to making our approach publicly available as an
open-source application.
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