
Survey on Robotic Systems Integration

Nadia Hammoudeh Garcia
Robot and Assistive Systems Department
Fraunhofer Institute for Manufacturing

Engineering and Automation (IPA)
Nobelstr. 12, 70569 Stuttgart, Germany

nadia.hammoudeh.garcia@ipa.fraunhofer.de

Andreas Wortmann
Institute for Control Engineering of

Machine Tools and Manufacturing Units (ISW)
University of Stuttgart

Seidenstr. 36, 70174 Stuttgart, Germany
wortmann@isw.uni-stuttgart.de

Abstract—Software integration is central to successfully de-
veloping, deploying, and operating robotics applications. Yet,
the particular integration process and its challenges are poorly
understood. The continuous evolution of the robotics sector,
incorporating constantly a growing number of technologies,
makes the unification of processes increasingly complicated.
Nevertheless, current research on robotics software integration
largely focuses on specific integration activities instead of con-
sidering the overall activity as a process. To provide some
insight into the state of robotics software integration, we drove
a survey among researchers and practitioners in the field.
In this survey, we inquired how robotics software integration
is currently performed in order to identify similarities with
traditional software development methodologies. Through this
study, we discovered commonalities in the phases of the process
and potential directions of a future research to address the
current challenges in the area.

Index Terms—robotics, integration, methodology, SDLC

I. INTRODUCTION

It is said that “software is eating the world” [1], which
is possible as creating software thrives on reuse - in form
of classes, modules, components, frameworks, libraries, or
containers. Hence, integrating existing software artifacts is
central in the engineering of software-intensive systems. In
robotics – as in automotive, industry 4.0, and other domains
– software is the main driver of functionality and added
value. Thus, software integration is central to successfully
developing, deploying, and operating robotics applications.

In many established domains, various software development
and integration methodologies have emerged to structure and
guide software integration (such as the waterfall model, tai-
lored V-Models, or specific implementations of agile methods).
This also aims to reduce the cost of integration. International
studies [15] report that for professional service robots operat-
ing in manufacturing and intra-logistics, the costs for system
and software integration steps make up for about 45% of the
final system costs, leaving only the remaining 55% for the
development of new components. Moreover, these figures are
even scaled up if we consider robotic platforms for commercial
distribution, where, in addition, the follow-up activities of
support and maintenance have to be considered.

Instead of the full-complete process, research in robotics
largely focuses on the integration of novel hardware [4], [8],
[24] or software [3], [5], [19], [29] solutions. In parallel, the

continuous evolution of robotics across different sectors, which
incorporates an ever-increasing number of technologies, makes
the integration of robotics software components increasingly
challenging. The main mission of an integrator is no longer
just to adapt existing solutions by making modifications to
their configurations. Rather, she faces the integration of new
modules coming from different vendors, following different
paradigms, and various implementation technologies. These
modules must be integrated not only at the level of technical
architecture but also at the level of functionality.

To shed light on the state of robotics software integration,
we conducted a survey among researchers and practitioners in
the field. With this survey, we aim to

1) Determine the similarities in the methodologies applied
by diverse profiles of robotic software developers during
the integration process;

2) Analyze whether it is possible to use already formalized
software development methods for the integration of
robots; and

3) Identify the challenges and the type of tools that can
facilitate the application of a formal development process.

Therefore, we reached out to 118 researchers and practi-
tioners in robotics software engineering. Through this study,
we identified common patterns in how integrators perform
the process and derived ideas on how to advance systems
engineering in robotics. The insights gained from this survey
will help researchers and practitioners in better addressing
the challenges of robotics software integration and provide
directions for future research to improve it further. All the raw
results of our study are publicly available1. In the remainder,
Sec. II presents the state of the art in software development
processes and the existing issues on the subject of software
integration. Afterward, Sec. III describes the methodology of
our survey, and Sec. IV presents its results. Finally, Sec. V
discusses observations, and Sec. VI concludes.

II. RELATED WORK

To systematically develop, integrate, operate, and maintain
robotics software, it is necessary to consider and support
its entire Software Development Life Cycle (SDLC) [25].

1https://ipa-nhg.github.io/RoboticSystemIntegration/

https://ipa-nhg.github.io/RoboticSystemIntegration/


Therefore, the following sections outline software integration
challenges and popular SDLC methods.

A. Software Integration Challenges

Integration is the process of connecting different sub-
systems (or components) into a single system in a way that this
assembly provides an overarching functionality [11]. Research
has identified different kinds of integration [28], including data
integration, functional integration, presentation integration,
portal integration, and process integration. In robotics, where
the systems are designed to perform complex tasks with many
different alternatives for the configuration and combination,
functional integration is probably the most relevant one,

The main challenges of functional integration are [2]:
(1) finding the appropriate integration level; (2) reconciling
different specifications; (3) managing different implementation
technologies; (4) deploying subsystems; and (5) interoper-
ability issues. This is in line with other sources that deem
major challenges inconsistent, misunderstood, or missing spec-
ifications [16], the requirement to involve rigorous testing,
verification, and validation [9], and as well as the ongoing
increasing complexity of robotics applications.

In the specific field of robotics, while performing the actual
integration, unsurprisingly, also the main issues identified are
related to the lack of common specifications at all the different
levels. An empirical study [26] highlighted the following
items: (1) missing standardisation of interfaces, (2) standard-
ised flange information not available, (3) misleading compati-
bility specification, (4) missing property specification, (5) mis-
leading incompatibility specification, and that (6) kits may
decrease device reuse and sustainability.

A proposed methodology [27] predicts the effort and time
required to complete a robot system integration by splitting
the whole process into two phases, (1) high-level integration,
how a software component is integrated with the development
environment (i.e., how the actual software is installed and
built), and (2) low-level integration, how a component is
integrated to interact with the rest of the components. This
methodology defines factors that influence the complexity the
following: the compatibility of the APIs of the components,
the language in which they are written, their performance in
terms of time and resource consumption, the quality of the
software (e.g., documentation, testing, ...), and the support and
maintenance of the software stack.

B. Methodologies for Software Development Processes

1) Software Development Lifecycle - SDLC:
a) Waterfall: The traditional waterfall model [18] of

software development assumes a linear-sequential life cycle
model that consists of Requirements Analysis, System Design,
Implementation, Testing, Deployment, and Maintenance. The
model assumes comprehensive front-loading.

b) V-Model: The V-Model [17] splits the waterfall model
into two legs of specification and development activities,
which are followed by corresponding testing activities that
begin on a very detailed level and complete with validation [6].

The activities of the first (development) leg are Requirement
Analysis, System Architecture, System Design, Software Ar-
chitecture, and Implementation. The activities of the second
(testing) leg are Unit Testing, Integration Testing, System
Testing, and Acceptance Testing. The traditional V-Model does
not consider returning to previous activities.

c) Agile Methods: Agile methodologies [7] structure the
development of software into different iterations in which
activities are performed in a cyclic way.

As an extension of agile methods, the DevOps [14] method-
ology aims to accelerate the software development lifecycle
and ensure continuous and high-quality delivery. Essentially,
it includes the following 8 activities: Plan, Code, Build,
Test, Release, Deploy, Operate and Monitor. Operations and
monitoring then lead to insights that trigger changes to the
software and enter the planning activity again.

2) Risk-driven process: Risk-driven process models are
software development methodologies that focus on managing
risks throughout the software development process. One ex-
ample of a risk-driven process model is the Spiral model, it
consists of the following phases: (1) Planning, where project
goals, objectives, and constraints are defined, (2) Risk Anal-
ysis, the risks are prioritized based on their impact and like-
lihood, (3) Engineering, the software is designed, developed,
and tested, and (4) Evaluation, the software is evaluated by
the stakeholders.

3) Rapid application development: Rapid Application De-
velopment (RAD) is a software development methodology
that prioritizes rapid prototyping and iterative development.
Therefore it consists of Requirements Planning, Prototype,
Iterative Development, Testing and Deployment.

None of these takes the specific challenges of robotics into
account.

III. SURVEY METHODOLOGY

A. Objective and Scope

We aim to collect information from robotics practitioners on
how robotic systems are currently integrated, focusing on the
process followed and how it could be unified. In detail, our
study2 aims to answer the question of how can established
SDLC methodologies can be (partially) applied to facilitate
robotics integration.

To investigate this main topic, we identify the following
research questions:

• RQ1. How can established software engineering method-
ologies be (partially) applied to robotics integration?

• RQ2. Which are the major challenges in robotics software
integration?

• RQ3. Which new tools would be most necessary to
support integration in applying established software in-
tegration processes?

In addition to these three aspects, and thanks to the answers
obtained, we were able to establish patterns in the current state

2Closed questionnaire: https://forms.gle/nhtf5WSN5jScVn7NA.

https://forms.gle/nhtf5WSN5jScVn7NA


of the activities followed for the integration of robotic systems,
our conclusions in this matter have already been released [13].

The introduction of the survey defined the target audience
of this experiment as “people with experience in any phase
of the integration of various components in robotics, from
the description of the solution to the system implementa-
tion and its maintenance”. This definition includes roboticists
from technical and organizational backgrounds, as well as
practitioners and researchers. Especially, the survey is not
constrained to a specific domain within robotics or to a specific
type of technology and it was open from 2022-01-21 to 2022-
02-15.

B. Questionnaire Design

The design of our questionnaire was guided by the rec-
ommendations [23] for the empirical validation of software
engineering.

It consists of the following five sections:
1) Responder profile: this section is used to cluster the

profile of the participants and help us in the analysis of
the data.

2) Application of established SDLC processes: in this
section, we present common activities of different estab-
lished processes (cf. Sec. II) for professional software
development and ask about their usability for the inte-
gration of robotic systems.

3) Challenges and improvements: to be able to address the
problems, we need to, first, identify the actual challenges
and possible improvements to mitigate them. That is what
we intend to find out in this section.

4) Existing tools to support integration: this section in-
vestigates existing tools that support the integrator and
aims to determine to what extent they are useful.

5) Desired tools to support integration: this section in-
quires the respondents’ opinions on what kind of new
tools they would like to have to facilitate their work
on robotics software integration, as well as at which
activities of the process, they are most essential.

The survey was made available by using Google Forms and
could be anonymously answered. The results were not shared
with the participants to avoid biases.

Overall, it requires only 10-15 minutes to be completed and
consists of 20 questions, out of which 15 are closed captions,
for which the participants could select (sometimes multiple
answers) from predefined answers or using a 6-point Likert
scale. For 10 of them, a free-text “Other” option enables
participants to expand on their answers or give additional
insights.

Out of the 20 questions, only 5 are mandatory as we
approach the topic very broadly and we do not expect par-
ticipants to have experience in all integration activities. To
obtain accurate answers, the only part where the participant
is being guided is the one where we intend to evaluate the
applicability of existing software development methodologies
to the systems integration phase, e.g., part 2 headed as “Appli-
cation of established SDLC processes”. This part, composed of

6 questions, starts with an explanatory text about a particular
methodology and asks the respondent for opinions about it,
then leaves an open text part to either argue why it is not
valid or to propose another more suitable methodology.

C. Distribution

To disseminate the questionnaire we used the following
distribution channels: (1) Personalized emails to our network
of professionals contacts, not only people we have collaborated
with in the past but also acquaintances at events; (2) Social
media (twitter, LinkedIn) using profiles related to the robotics
domain; (3) Disseminating the survey in the ROS commu-
nity3;(4) Promotion through robotics mailing lists, such as
euRobotics and robotics-worldwide: (5) Utilizing GitHub data
mining techniques to obtain contact information for top de-
velopers within open-source robotics communities, including
ROS, OROCOS, and Yarp. Following this approach, we sent
a total of 180 individual emails with participation invitations
to identified experts.

IV. FINDINGS

We have received a total of 118 responses, a responsiveness
rate sufficient for surveys in software engineering [23]. For
these responses, we performed the data analysis quantitatively
for answers where participants could select from multiple
options and report the findings in form of diagrams in the
following. For free-text answers, the analysis is qualitative,
analyzing each answer separately and classifying them by
content. To consider the potential deviation of the data by
participant profile, we also analyze the responses in two
different dimensions: industrial and academic practitioners.

A. Company and responder profile

The first section of our survey attempted to classify the
respondents by type of profile. Of the 118 surveyed 45.3% of
them work in the private sector, 28.2% at the universities, and
22.2% in research centers. The outstanding 4.3% are people
working for the government, retired, or freelancers. We found
that 38.5% of the participants work for a company with more
than 1000 employees, while 29.1% are part of small companies
(under 50 employees). The rest is divided into medium size
companies or institutions, 19.7% for companies between 50
and 250 people and 12.8% between 250-1000 members.

By inquiring about the main activity of the company, we
found out that 56.4% of the participants work for a research
company (and 49.6% exclusively in robotics), 31.6% of soft-
ware provider companies, 23.9% of companies whose main
activity is the robot application integration, and 16.2% of robot
manufacturers.

We disseminated our survey to reach out to anyone who
is involved in the robotic systems integration process but
the channels we used for its distribution are mainly for
professionals with a technical profile rather than a project
management profile. It is therefore not surprising that the

3https://discourse.ros.org/t/survey-on-robot-software-integration-process/
23935

https://discourse.ros.org/t/survey-on-robot-software-integration-process/23935
https://discourse.ros.org/t/survey-on-robot-software-integration-process/23935


(a) Distribution of the answers to the question about the activities
followed during the integration process.

(b) Distribution of the answers to the question about the activities
that should be followed during the integration process.

Fig. 1: Traditional process evaluation results (RA = Requirement Analysis; SD = System Design; IM =Implementation; VV&
T = Validation, Verification, Testing; DE = Deployment; MM = Monitoring and Maintenance)

Fig. 2: Overview of the answers to the question about the
way to execute the activities.

71.8% of the responders perform tasks of software develop-
ers, followed by the architecture designers (44.4%), system
integrators (36.8%), project managers (31.6%), and product
owners (20.5%). Among others, our interviewees have added
activities like teaching at university, scientific research, or
company direction. Due to the audience of our survey, mostly
software developers, and the lack of a predefined integrator
profile in robotics, only one person has indicated that his/her
single and exclusive role in projects is system integrator.

The profile combination mentioned most often, is that of a
person who is in charge of the software development and the
design of the system architecture and its integration.

B. Traditional process to develop software and its application
for the software integration phase

To evaluate the use of traditional software development
methods, we analyzed in detail the existing SDLC method-
ologies II-B, looked for common activities, and describe them
from a software integration perspective. The result of this study
is presented to the survey participants as the header of this
section:

• Requirements Analysis: Activity focused on the iden-
tification of the conditions that must satisfy the resulted
application.

• Design: Phase to comprehend the solution by examining
the user requirements, defining the architecture, and se-
lecting the components to be wired. During this activity,
the architecture has to be defined as well as the list of
modules that will compose the final system.

• Code Implementation: Activity to write the code that
allows the system to be launched (i.e., configure the
modules and implement the code for the interaction.

• Validation, Verification and Testing: Validation con-
firms that the system is correct. While verification con-
firms that the system is correct to fulfill the product
requirements. Testing is the process of evaluating the
implementation under test through validation and veri-
fication.

• Deployment: Activity that comprises all the activities
necessary to make the software available for use in the
application. Among others, we can consider deployment
tasks: setup, installation, configuration of the hardware-
software pair, activation and deactivation activities.

• Monitor and Maintenance: Actions aimed to ensure
compliance with the product requirements over time. All
the activities related to the upgrade, of both, the system
software and its dependencies need to be considered in
this activity, as well as efforts to ensure that the end-user
can operate the final system.

The first question in this section is about which of
the activities presented are currently being followed
while performing the software integration of a robot
system. The ranking of the most and least completed
steps(Fig. 1a) coincides for both profiles being this (1) Code
Implementation, (2) Design, (3) Validation, Verification,
and Testing, (4) Requirements Analysis, (5) Deployment,
and (6) Monitor and Maintenance. Nonetheless, we see



Fig. 3: Results of the question about the major challenges during the software integration process. The respondents ranked all
the proposed challenges from highest(1) to lowest(5).

a considerable difference in the percentage of developers
following all the steps, while in the industry this data is
48.1% for academia this figure is reduced to only 13.6%.
Monitoring and Maintenance of the system and Requirements
Analysis are the root of this disturbance, both are skipped by
a large segment of the academic sector.

Finding 1: While in industry 48.1% say they complete
all the activities we proposed, in research this percentage
is significantly reduced to only 13.6%.

However, when asked about the activities that should be
followed during the integration process, we find different
answers, again we can distinguish between the preferences
of the industry and the academic sector (Fig. 1b). Here trends
change, we identify that the academy sees a much greater
need to follow all the activities (45.5% support this), and
substantially increases the need for a Monitoring and Mainte-
nance phase. They see the need for improvement in how they
do the integration and encourage the idea of accomplishing
additional activities. Another curious fact, is if we look at
the Requirements Analysis phase, we see that while research
would like to give it more importance, for the private industry
it is the opposite, they believe that it is not a necessary phase
to be done by the integrator. This can probably be explained
by the fact that they prefer another role within the team to be
in charge of the requirements analysis, and that the integrator
has a technical profile and focuses more on the design and
implementation steps.

To propose any other activity in the process we leave a
free text question. In the answers, we find suggestions such as
analysis of existing solutions, system prototyping phase, sim-
ulation, documentation, demonstration, and customer training
linked to support. Also, some responders proposed the known
V-Model as a solution applicable to the robotics software
integration process. To conclude this section, we inquired in
which mode the activities should be executed and give three
default options: (1) Purely linear, i.e., one activity after the

other; (2) Cyclic and continuous, i.e., after the last activity
you start again with the first activity (DevOps style), or (3)
Partially cyclic, after certain activities, you go back to adjust
tasks from previous phases.

Once again the difference in profile preferences is evident
(Fig. 2), with 61.0% of academia supporting the partially cycli-
cal mode, compared to 51.9% for the private sector favoring
the continuous cyclical mode. Among other proposals, several
participants suggest a hybrid mode between a partially cyclical
process and a continuous cyclical process, i.e., only some
phases should be conducted continuously. Other respondents
point out that the way the process is executed is highly
dependent on the product to be developed, so that it must
be adapted individually to each project and product.

C. Challenges and improvements

In this section, to frame the views on the challenges, we
asked two extra questions our respondents:

• The framework used for the development, since the
limitations of this framework can be the cause of the
challenges. Here, 80.2% of the respondents indicated
ROS, 57.7% indicated ROS 2, 6.6% indicated OPC-UA,
and 6.3% indicated Yarp.

• The use of tools that assist them during the integration
phase, here a clear 68.7% said yes, they use tools.

Interestingly, when ranking which of the main challenges
in robotics are the most relevant during the integration phase,
we found no notable differences between the responses of
each profile (Fig. 3). Both rank Dynamic adaptation to the
environment as the major constraint faced by a robotic systems
developer (43.6% of them put it in the first place). The second
place is assigned to Safety certification (20.0%) and Validation
of the resulting system (16.4%).

At the other side of the spectrum, we find the Software
Reusability and Interoperability between middlewares
and systems. This is not surprising, since if most of the
respondents use ROS (or ROS 2), and reusability is assured
by the nature of this framework, and they do not face



Fig. 4: Summary of the answers to the stage for which a tool would be more beneficial question.

interoperability problems since they do not target hybrid
systems.

Finding 2: 43.6% of the participants ranked the Dynamic
adaptation to the environment as the major challenge
faced by robotic systems developers.

D. Tools to support integration

It is also relevant for us to know what instruments we have
available to assist the integrator. Therefore we asked about
the tools that are today in use. Even leaving the answer as
open free text, we could easily find patterns in the type of
tools that are employed. A 50% of the respondents assert
that version control systems (such as GitHub or GitLab) are
a great help for the implementation of the code, usually, it
is combined with continuous integration systems. The second
most mentioned tool types, 7 out of 53 responses, were for
deployment containerization tools, such as Docker. The same
percentage of people indicated IDEs as good support. The list
of tools is completed by simulators (concretely Gazebo [20])
and ROS-specific tools (like rosgraph [22] or rosbag [21]).
Another type of tool to highlight from the answers are model-
based tools, among them SysML, SmartMDSD, or Simulink
were mentioned.

To complement this part, we also wanted to investigate
in which phases these tools are used. Unsurprisingly, the
answers obtained are consistent with the tools mentioned
above. The 76.3% of the responses pointed to the use of
tools during the Implementation phase, 73.7% for Validating
and Testing purposes, and 55.3% for the Deployment phase.
Then, 34.2% reported the use of tools for System design,
while 32.9% use them for Monitoring and Maintenance
of the system. Last, only 7.9% said that use tools for the
Requirements Analysis phase.

Finding 3: The 76.3% of the responses pointed the use
of tools during the Implementation phase, 73.7% for
Validating and Testing purposes.

E. Desired tools to support integration

In this last section of the survey, we want to find out the
needs of the robotics community in terms of new tools to
unify the procedure. A more than overwhelming 95.5% believe
that tools can help, simplify and standardize the integration
process.

The majority of respondents indicated in their free-text
responses (20 out of 78 answers) that they see the use of tools
to manage the use of common interfaces, and to some extent
standards, as essential. Also, the unification of documentation
is highlighted by the responders. Another valuable feature
of a potential new tool is the assistance in the validation,
verification, and testing stages of the system (17 out of
78 respondents). These tasks are very tedious to perform
manually, any form of automation in this aspect would be
very beneficial. Other users bring up code generator tools that
not only save time and effort but also make the code less
error-prone. A handful of participants go further and talk about
model-based tools that allow the formal description of both,
hardware and software characteristics of components, and even
one says “making aspects explicit and achieve traceability
from the requirements down to the source code”. In line with
this last statement, to the question of what feature used in other
domains would be beneficial in robotics, 74.1% point to the
model-based nature, a 65.7% refer to the benefit of including
graphical interfaces that make the process more intuitive and
a 61.1% also see the need for tools that incorporate code
generators. Among other suggestions, we have captured formal
verification of systems, simulators, and data-driven tools.

When surveyed about in which phase of the development
of the integration would be most beneficial to have tools,
the results (Fig. 4) of the most selected option in the first
position are very close. If we also consider the option
selected as a second choice, we can say that the robot
developers wish to have a tool that facilitates the Validation,
Verification, and Testing activity. The second stage selected,
with little difference, is the Design phase. If we go to
the opposite extreme, the responders clearly identify the
Requirements Analysis phase as the one where they see the



least need for help. On this topic, the responses between the
scientific community and private industry have no remarkable
differences, both sectors reach similar conclusions.

Finding 4: Robot developers wish foremost to have a tool
that facilitates the Validation, Verification, and Testing
activity.

V. DISCUSSION

A. Lessons Learned

RQ1. Applicability of SDLC Methodologies: To obtain a
conclusion on this aspect, we must look at Fig. 1b, when
asking whether the phases we propose (which have been
completely extracted from existing SDLC methodologies)
should be carried out during the system integration. All the
phases have obtained more than 50% support. We conclude
from this that the community generally supports using SDLC
methodologies but with nuances:

• The phases should be adapted to accommodate specific
integration tasks, as the proposed steps are too generic
for software development.

• The phases do not all have the same importance, de-
pending on the Technology Readiness Level (TRL) some
may even be omitted in the case of rapid prototyping
and, even if all of them are conducted, not all must be
executed continuously or cyclically, some will suffice to
be performed only once.

As a first instantiation of a methodology for software inte-
gration in robotics, the exercise of evaluating SDLC methods
seems not to have gone so far astray. The basis is good,
but we are also aware that such generic methods for product
development cannot be applied in a literal and bare-bones way.
All the information we have gathered with our study is of great
value to adapting the methodologies to cover the particularities
of the integration topic and to identify the filings in the process
depending on the maturity level of the solution to be built.

RQ2. Challenges: Based on our findings, the most impor-
tant challenges to robotics software integration are:

1) Dynamic adaptation to the environment: This is the chal-
lenge of most concern to respondents and is no surprise.
Robotic systems have to operate in a real environment and
interact with it. On a technical level, we have increasingly
better sensors and perception software to help us. But on
a practical level, it is a very complex matter to solve
for an integrator, there are too many peculiarities of each
particular scenario to be considered.

2) Safety certification: In most cases, the certification of a
robotic application is a very arduous task, as it has to be
done in a specific and individual way for each different
setup. In this respect, standardization is probably the best
way to address this challenge, as these standards comprise
a set of requirements whose conformity can be evaluated
for the different robotic systems.

3) Validation of the resulted system: As Finding 4 suggests,
robotics integrators would appreciate having tools to

assist in this task. But there is very little development in
this area. This is because to automate (fully or partially)
the validation, we need first a formal definition of the
customer specifications as well as of the built system,
in both aspects, there is a complete lack of standardized
solutions.

RQ3. Tools: Several conclusions can be drawn from the
results:

1) The community supports the development of tools for
integration.

2) There is a great need for tools for the unification of the
process, specifications, and interfaces. Many respondents
claim standardization in robotics and point out that the
use of tools can be part of the solution.

3) The preferred choice is model-based tools.
4) Validation, verification, and test functionalities, as well

as system design should be the main priorities to be
supported by tools.

It is very challenging to design a set of tools or a com-
plete toolchain that can address all of these points alto-
gether. Nonetheless, in other, more consolidated industries
of complex systems, e.g., automotive or aeronautics, we can
find some traceability between the use of tools, standard-
ization, utilization of models, and validity and verification
of requirements [10], [12]. These industries have a strong
base of standards. The tools available to software solution
developers use models that conform to these standards, which
greatly facilitate the integrators’ work (including VV&T).
These domains should be taken as inspiration when developing
new tools. However, we see an analog development arduously
complicated since in robotics we do not have the first founda-
tion, a base of unified and consolidated standards.

B. Threats to validity

To discuss the threats to validity of our survey we analyze
the standard classification [23].

1) Construct Validity: In this aspect, the biggest threat
to our study has been vocabulary. Many of the terms used
are abstract (e.g., system, tool, or process). In some of the
answers, we detected that users did not interpret the terms in
the context we were addressing. This has only happened in
some free-text answers, nevertheless, their answers have been
partly considered for the general evaluation of the study.

2) Internal Validity: For the distribution of the survey we
promoted it through channels outside our circle of partners
and collaborators, in this way, we have reached anonymous
and unbiased parties. However, it must be considered while
looking at the results that most of the respondents are software
developers. This is especially relevant for non-software-related
questions like the challenges part.

3) External Validity: By tackling the issue of integration
and this being a common process in any type and category of
robotic application, we certainly cannot consider threats in the
aspect of applicability to other robotic domains, all of them
have been de facto included.



VI. CONCLUSION

We conducted a survey on robotics software integration that
was answered by 118 participants from industry and academia.
Their answers are helpful to understand the state of the art
in robotics software integration, as well as the demands of
the community. Judging from the results there are three clear
things. There is still an opportunity to consolidate a generic
process for software integration in robotics, there is a clear
consensus on the current issues that an integrator faces and
there is room for tools that provide solutions to the community.

In the future, on one hand, we plan to consolidate the
insights from this survey into a proposal of a generic
robotics software integration process to systematically guide
researchers and practitioners in efficiently engineering robotics
applications. A draft of this proposal, along with a summary
of the survey responses, will be made public using the same
distribution channels. On the other hand, we will investigate
tools to unify the process and address the challenges. Primar-
ily, we will look into other traditional domains of complex
software engineering, such as automotive and avionics, and
more specifically those based on model-driven development
(since 74% of the responses encourage the use of this type of
solution). Both efforts converge in a clear mission: unify and
facilitate the integration of software in robotics.

ACKNOWLEDGMENT

We sincerely thank all participants of our survey.
This research is sponsored by the Baden-Württemberg

Ministry of Economic Affairs, Labour and Tourism Baden-
Württemberg at the AI Innovation Center “Learning Systems
and Cognitive Robotics”.

REFERENCES

[1] M. Andreessen, “Why software is eating the world,” Wall Street Journal,
vol. 20, no. 2011, p. C2, 2011.

[2] K. Balasubramanian, D. C. Schmidt, Z. Molnár, and Á. Lédeczi, “System
integration using model-driven engineering,” in Designing software-
intensive systems: methods and principles. IGI Global, 2009, pp. 474–
504.

[3] R. Bormann, T. Zwölfer, J. Fischer, J. Hampp, and M. Hägele, “Person
recognition for service robotics applications,” in 2013 13th IEEE-RAS
International Conference on Humanoid Robots (Humanoids), 2013, pp.
260–267.

[4] L. Chin, M. C. Yuen, J. Lipton, L. H. Trueba, R. Kramer-Bottiglio, and
D. Rus, “A simple electric soft robotic gripper with high-deformation
haptic feedback,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 2765–2771.

[5] R. Dietrich and S. Dörr, “Deep learning-based mutual detection and
collaborative localization for mobile robot fleets using solely 2d lidar
sensors,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019, pp. 6706–6713.

[6] I. Drave, S. Hillemacher, T. Greifenberg, B. Rumpe, A. Wortmann,
M. Markthaler, and S. Kriebel, “Model-based testing of software-based
system functions,” in 2018 44th Euromicro conference on software
engineering and advanced applications (SEAA). IEEE, 2018, pp. 146–
153.

[7] M. Fowler, J. Highsmith et al., “The agile manifesto,” Software devel-
opment, vol. 9, no. 8, pp. 28–35, 2001.

[8] T. Froehlich and U. Reiser, “Design and implementation of a spherical
joint for mobile manipulators,” in Proceedings of ISR 2016: 47st
International Symposium on Robotics, 2016, pp. 1–8.

[9] F. Gerhardt, “Integration of programming environments for platform
migration.” Ph.D. dissertation, University of Tübingen, Germany, 2003.

[10] V. I. GmbH. DaVinci Developer - Designing AUTOSAR Software
Components. Accessed: 2022-08-06. [Online]. Available: https://www.
vector.com/int/en/products/products-a-z/software/davinci-developer/

[11] J. Grady, System Integration. CRC Press, 1994.
[12] M. Halle and F. Thielecke, “Avionics next-gen engineering tools

(avionet): Experiences with highly automised and digital processes
for avionics platform development,” in 2021 IEEE/AIAA 40th Digital
Avionics Systems Conference (DASC), 2021, pp. 1–8.

[13] N. Hammoudeh Garcia and A. Wortmann, “Patterns and tools in robotic
systems integration,” in 2022 IEEE International Conference on Robotic
Computing (IRC), 2022.

[14] M. Hüttermann, DevOps for developers. Apress, 2012.
[15] IFR, “International federation of robotics - annual report.” [Online].

Available: https://ifr.org/
[16] A. M. Madni and M. Sievers, “Systems integration: Key perspectives,

experiences, and challenges,” Systems Engineering, vol. 17, no. 1, pp.
37–51, 2014.

[17] S. Mathur and S. Malik, “Advancements in the v-model,” International
Journal of Computer Applications, vol. 1, no. 12, pp. 29–34, 2010.

[18] K. Petersen, C. Wohlin, and D. Baca, “The waterfall model in large-scale
development,” in International Conference on Product-Focused Software
Process Improvement. Springer, 2009, pp. 386–400.

[19] S. Realpe, F. G. Roldan, J. M. Fajardo, J. D. Hernández, and P.-
F. Cardenas, “Benchmark of sampling based motion planners in bin
picking manipulation task,” in 2022 27th International Conference on
Automation and Computing (ICAC). IEEE, 2022, pp. 1–6.

[20] O. Robotics. Gazebo: Robot simulation made easy. Accessed:
2022-08-06. [Online]. Available: http://gazebosim.org/

[21] ——. rosbag: Set of tools for recording from and playing back
to ROS topics. Accessed: 2022-08-07. [Online]. Available: http:
//wiki.ros.org/rosbag

[22] ——. rosgraph: command-line tool that prints information about the
ROS Computation Graph. Accessed: 2022-08-07. [Online]. Available:
http://wiki.ros.org/rosgraph

[23] F. Shull, J. Singer, and D. SjÃ¸berg, Guide to Advanced Empirical
Software Engineering. Springer, 01 2008.

[24] J. T. Stoll, K. Schanz, and A. Pott, “A compliant and precise pneumatic
rotary drive using pneumatic artificial muscles in a swash plate design,”
in 2019 International Conference on Robotics and Automation (ICRA),
2019, pp. 3088–3094.

[25] B. Summers, Effective Methods for Software and Systems Integration.
CRC Press, 04 2016.

[26] D. Tola, E. Madsen, C. Gomes, L. Esterle, C. Schlette, C. Hansen,
and P. G. Larsen, “Towards easy robot system integration: Challenges
and future directions,” in 2022 IEEE/SICE International Symposium on
System Integration (SII), 2022, pp. 77–82.

[27] P. Triantafyllou, R. Afonso Rodrigues, S. Chaikunsaeng, D. Almeida,
G. Deacon, J. Konstantinova, and G. Cotugno, “A methodology for
approaching the integration of complex robotics systems: Illustration
through a bimanual manipulation case study,” IEEE Robotics & Au-
tomation Magazine, vol. 28, no. 2, pp. 88–100, 2021.

[28] D. Trowbridge and M. Corporation, Integration Patterns, ser. Patterns
& practices. Microsoft Corporation, 2004.

[29] E. Wete, J. Greenyer, A. Wortmann, O. Flegel, and M. Klein, “Monte
carlo tree search and gr (1) synthesis for robot tasks planning in
automotive production lines,” in 2021 ACM/IEEE 24th International
Conference on Model Driven Engineering Languages and Systems
(MODELS). IEEE, 2021, pp. 320–330.

https://www.vector.com/int/en/products/products-a-z/software/davinci-developer/
https://www.vector.com/int/en/products/products-a-z/software/davinci-developer/
https://ifr.org/
http://gazebosim.org/
http://wiki.ros.org/rosbag
http://wiki.ros.org/rosbag
http://wiki.ros.org/rosgraph

	Introduction
	Related Work
	Software Integration Challenges
	Methodologies for Software Development Processes
	Software Development Lifecycle - SDLC
	Risk-driven process
	Rapid application development


	Survey Methodology
	Objective and Scope
	Questionnaire Design
	Distribution

	Findings
	Company and responder profile
	Traditional process to develop software and its application for the software integration phase
	Challenges and improvements
	Tools to support integration
	Desired tools to support integration

	Discussion
	Lessons Learned
	Threats to validity
	Construct Validity
	Internal Validity
	External Validity


	Conclusion
	References

