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ABSTRACT
The Robot Operating System (ROS) is a de facto standard for pro-
gramming robotic systems. It currently provides well-established
client libraries for two major languages: C++ and Python. Different
programming languages are known for their different abstraction
levels, and as a consequence, their resource usage, including energy
consumption. With energy efficiency being recurrently a quality
requirement, it is important to understand how programming in
those two languages may affect the energy consumption of robotic
systems. In this study, we analyze the impact on energy consump-
tion when programming ROS nodes in those two main supported
languages. We design and conduct an empirical experiment on
ROS 2 nodes implemented in C++ and Python for simple and well-
documented topic-based examples. We statistically assess to what
extent energy consumption is affected by language choice, where
nodes programmed in C++ presented a consistently better energy
efficiency. A deeper analysis of the measured variables indicates
that the energy efficiency difference between the two client libraries
is closely related to the underlying architecture.

CCS CONCEPTS
• Software and its engineering → Software design tradeoffs;
• Computer systems organization→ Robotics; • Hardware →
Impact on the environment.
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1 INTRODUCTION
Robots play an important role in many areas of our society. They
are commonly used in the manufacturing industry, transportation
(including self-driving vehicles), and as domestic allies (e.g. vacuum
cleaners) [5]. A great part of those robots depends on increasingly
complex software, where the Robotic Operating System(ROS) [6, 21]
appears as a key contributor to writing complex robotic systems.

ROS is considered the de-facto standard for robotic systems in
both, research and industry [13]. It provides an abstraction layer
that enables specialists from different areas to integrate their soft-
ware into one robotic system. In addition, ROS comprises a compre-
hensive set of open-source libraries and packages. With over half a
billion ROS packages downloaded in 2020, it has also encouraged
code reuse [21]. ROS has two main versions, ROS 1 and ROS 2, with
ROS 1 end-of-life (EOL) programmed for 2025. In this paper, we
focus only on ROS 2, the only supported distribution in the near
future, using ROS as nomenclature.

Software energy efficiency has been a recurrent concern among
software developers [19]. This is stimulated by factors that include
environmental impact, budget, and battery-dependent devices [6,
15, 22], which also applies to the robotic domain. Simple software
architectural decisions can make an impact on the energy efficiency
of robotic software [4], where the programming language is known
to be a determinant factor [17]. In the case of ROS, C++ and Python
are the two main programming languages thoroughly supported
and documented by the community. Therefore, practitioners usually
start by choosing one of them, which must be done without further
understanding their impact on ROS systems’ energy efficiency.

In this paper, we systematically investigate the energy con-
sumption and power consumption of ROS nodes implemented in
both languages, C++ and Python. We choose to address only well-
documented ROS algorithms, which provide concrete examples on
ROS tutorials Wiki page1. As a preliminary study, we only inves-
tigate ROS communication using topics, the most common ROS
communication paradigm in recent studies [2]. All the algorithms
are rigorously revised to keep their complexity and package depen-
dencies as close as possible. We experiment with four different ROS
nodes, each implemented in the two selected languages, making it
a 4-factor and 2-treatment (4F-2T) experiment.

The target audience of this study are researchers and practition-
ers working with ROS-based systems. This can aid other researchers
and practitioners in making informed decisions, optimizing their
ROS systems, and conducting meaningful experiments in the field

1https://docs.ros.org/en/galactic/Tutorials.html
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of energy efficiency robotic systems. It teases researchers to con-
duct further investigations, going from different ROS communi-
cation models to architectural node design, such as service-based
communication and composing multiple nodes in a single process.
Moreover, it aids practitioners in making informed decisions about
which language to use for their specific robotics projects and thus
enables greener robotic software.

The paper not only contributes with valuable insights into the
energy and power consumption of ROS nodes but also offers a
methodological framework and practical guidance for conducting
further experiments in this domain. We also provide a complete
replication package and experimental data, which can benefit both,
researchers and practitioners. Finally, the paper also works as a
warning for greener robotic software, which may contribute to
more environmentally aware robotic software development.

2 BACKGROUND
This section presents the fundamental concepts of ROS, its pro-
gramming premises, and the principles of the Running Average
Power Limit (RAPL).

2.1 ROS
ROS is a standard robotics framework in both, industry and research,
for the effective development and building of a robot system [20].
Currently, there are many distributions of ROS available, grouped
into two main versions (ROS 1 and ROS 2).

ROS architecture consists of several component types: nodes, top-
ics, messages, and services. Nodes are executable processes, usually
implementing a well-defined functionality of the ROS system. ROS
nodes exchange data in an asynchronous publish/subscribe model.
Messages are transmitted on a topic by a node with a publisher role.
Other nodes that want to receive that information subscribe to that
topic. If the nodes need to communicate synchronously, they can
also be implemented with service calls.

2.2 ROS Programming
ROS is renowned for its flexibility in language choice, allowing
developers to work with the language that best suits their needs.
C++ and Python are the most used in ROS tutorials, counting on
the two major client libraries maintained by the ROS 2 community,
rclcpp2 and rclpy3, both built on top of rcl library4. As we can
observe in Figure 1, all the client libraries share the same underlying
software layers, starting with the ROS middleware, which is then
overlapped by the rmw layers that abstract the ROSmiddleware layer
enabling to switch between different communication middlewares
without ROS 2 modifications. At the top, the rcl layer provides a
uniform and high-level API for programming ROS 2 applications.

2.3 Running Average Power Limit (RAPL)
Modern processors provide a Running Average Power Limit (RAPL)
interface for power management, which reports the processor’s
accumulated energy consumption, and allows the operating system
to dynamically keep the processorwithin its limits of thermal design

2https://github.com/ros2/rclcpp
3https://github.com/ros2/rclpy
4https://github.com/ros2/rcl

Figure 1: Underlying layers of a ROS node programming [7].

power (TPD) [11]. RAPL is a recurrent profiling tool in previous
related work [8, 12, 24, 26]. It keeps counters that can provide power
consumption data for both, processor and primary memory. CPU is
proven to be one of the most energy-consuming parts of a computer
system [9, 17, 24]. Despite the primary memory usage not being a
usual determinant factor in other studies [17, 24], it is one of the
main RAPL metrics and in this work will be used to determine
whether it is still the case for ROS programming.

3 EXPERIMENT DEFINITION
The experiment of this paper is defined after the Goal Question
Metric (GQM) model [3]. It starts with a well-defined goal, which is
then refined into research questions that are answered by measuring
the software system using objective and/or subjective metrics.

3.1 Study Goal
This study goal is to analyze ROS programming with C++ and
python for the purpose of understanding the extent with respect
to energy efficiency from the point of view robotics researchers and
practitioners in the context of publisher and subscriber ROS nodes.

The goal is defined after a previous research [17] that spots
C++ as one of the most energy-efficient programming languages.
However, in their work, the algorithm complexity is the major
factor that influences energy consumption, among which neither
depends on the massive underlying software layers illustrated in
Figure 1 nor is ROS-based.

ROS algorithms depend on canonical client libraries, such as
rclcpp and rclpy. Despite those APIs being developed in parallel
(for both languages) with the same underlying design principles,
both languages are very different in terms of abstraction. This may
impact directly ROS algorithm’s performance and energy consump-
tion, which should be thoroughly investigated.

3.2 Question
From our goal, we derive the following two research questions:
RQ1: What is the effect of C++ and python on the energy efficiency

of a publisher/subscriber ROS node?
RQ2: Howdoes the underlying software stack influence ROS nodes’

energy efficiency?
Answering research RQ1 can help practitioners and researchers

ponder which programming language to choose for future green
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ROS projects. The RQ2 answer helps us to understand how much
the ROS node algorithm itself and the rclpy and rclcpp client
libraries impact global energy consumption in conjunction with all
other software layers.

3.3 Metrics
Table 1 describes the metrics used for measurements during the
experiments. Energy consumption, power and execution time are the
keymetrics used to assess the energy efficiency of a ROS node, while
CPU and memory usage are metrics that help us to understand how
intensive is the ROS node in terms of computational processing,
and then reason about the measured energy efficiency.

Table 1: Experiment metrics.

Metric Unit Description
Energy Con-
sumption

millijoules
(mJ)

Amount of energy necessary to
run the ROS node.

Power milliwatts
(mW)

Energy consumption rate when
running the ROS node.

Execution
time

milliseconds
(ms)

Total time spent to run a ROS
node.

CPU usage percentage
(%)

Average CPU percentage used
during a ROS node execution.

Memory
usage

megabytes
(KB)

Amount of memory used dur-
ing a ROS node execution.

All the measurements refer to the ROS node operating system
process. The energy consumption measurements take into account
the two main processing factors: CPU and memory. After the en-
ergy consumption is measured, we calculate the power with the
following formula: 𝑃 = 𝐸𝐶

𝑡 , where 𝑃 is power, 𝐸𝐶 is energy con-
sumption, and 𝑡 is the total ROS node execution time in seconds. In
parallel with the energy consumption, we also measure the average
CPU and memory usage. We give more details of the measurement
process and related calculations measurements in Section 5.3.

4 EXPERIMENT PLANNING
We choose to implement ROS nodes after well-documented pub-
lish/subscribe algorithms from ROS Tutorials Wiki pages1, which
provide concise and compatible examples in C++ and Python. The
algorithms are also selected to be independent of any physical robot,
which increases the experiment’s controllability.

Table 2 depicts the four selected algorithms, with a short de-
scription, and details of their implementation, including their de-
pendency on other packages and libraries, and algorithm complex-
ity metrics (i.e., logical lines of code – LLOC, and the algorithm
McCabe’s cyclomatic complexity – MCC). The dependencies and
algorithm metrics are used to illustrate the compatibility between
Python and C++ algorithm implementations.

The algorithms cover a basic topic-based asynchronous commu-
nication scenario, with two different publisher and subscriber
node implementations, which also deal with two different message
types. Nodes 1 and 2 implement a basic publish/subscribe topic
communication, where Node 1 (publisher) sends plain-text mes-
sages to a topic, and Node 2 (subscriber) reads those messages

by subscribing to the topic. Node 3 implements a publisher that
sends coordinates instead of a plain-text message, which results in
a distinct ROS message package requirement (i.e., geometry_msgs
instead of std_msgs). Finally, Node 4 implements the turtlesim
subscriber, which reads the coordinates sent by Node 3. We do
not render the turtlesim on the screen avoiding extra processing
that is not related to the subscriber node. Although, we validate
Node 3 with the official turtlesim node5. We provided a replica-
tion package with all the implementations, where we can also check
the compatibility among different language algorithms6.

The experiment is planned with the following variables.
• Independent variables: the independent variable under
investigation in this study is the ROS algorithm. The values
for this variable correspond to the four algorithms subject of
this study, their corresponding message types, and the two
languages they are implemented with.

• Static variables: static variables are the same for all runs,
which reflect the ROS system deployment, except the ROS
algorithm under study. Therefore, the static variables are the
host device; the ROS distribution; and the operating system.

• Dependent variables: these are the metrics that depend on
the experiment execution, previously described on Table 1.

The factors of this study are the four ROS algorithms with two
treatment values (C++ and Python) each, making our experiment
design 4 factors - 2 treatments (4F-2T) experiment [25]. The experi-
ment is balanced, with respect to its factor, as every treatment has
been applied for 100 runs. In Section 5.2, we give more details of
how nodes are executed during the experiments.

5 EXPERIMENT EXECUTION
In this section, we define the hardware and software components
and aspects of experiment execution.

5.1 Instrumentation
All the experiments were conducted on a single desktop with the
following specifications: Linux Ubuntu 22.04 operating system,
kernel version 6.2.0-33-generic, with 8GB of RAM, and a Intel(R)
Core(TM) i5-10210U CPU @ 1.60GHz.

All the ROS packages necessary to run the experiments are
installed locally under the ROS humble distribution7, with an end-
of-life (EOL) in May 2027. For each algorithm, we create a dedicated
ROS package, and implement it as a ROS node. All the procedures
are inside the node’s callback functions, so ROS can spin them,
taking care of underlying threading8. Algorithm executions are or-
chestrated by the ros2 run command, which speeds up automation
and guarantees the same underlying layers for every execution.

To avoid concurrency, all the experiments were executed with a
dedicated machine, without running other end-user apps. The op-
erating system power saving mode was set as performance which
should not limit the power usage. Finally, we gave priority level
−20 (the highest) to the process corresponding to the experimented

5https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Introducing-
Turtlesim/Introducing-Turtlesim.html
6https://github.com/IntelAgir-Research-Group/energy-ros2-cpp-python
7https://docs.ros.org/en/humble/index.html
8http://wiki.ros.org/roscpp/Overview/Callbacks%20and%20Spinning
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Table 2: Algorithms subject of investigation

Node Description Dependencies LLOC
Python

LLOC
C++

MCC
Python

MCC
C++

1.Simple Publisher (Node1) ROS node (talker) that continu-
ously sends messages to a topic for
a constrained period of time.

rclpy/rclcpp,
std_msgs

34 39 2 2

2.Simple Subscriber (Node2) ROS node (listener) that sub-
scribes to a topic and reads mes-
sages published by (Node1) until no
more messages are received.

rclpy/rclcpp,
std_msgs

34 42 2 2

3.Teleoperation Publisher (Node3) ROS node that sends coordinates
via teleoperation messages to sup-
posedly drive a simulated robot for-
ward and backward.

rclpy/rclcpp,
geometry_msgs

35 38 3 3

4.Teleoperation Subscriber (Node4) ROS node that reads coordinates
published by Node 3.

rclpy/rclcpp,
geometry_msgs

30 36 2 2

algorithms to give it the priority to access the machine resources.
We wait 1 minute between each experiment execution waiting for
the machine to cool down. This is greater than the observable time
for the CPU to go back to its initial usage percentage.

5.2 Nodes Executions
The nodes are executed in pairs (a publisher and its respective
subscriber): node1with node2, and node3with node4. Keeping in
mind that for each subscriber the publisher must fork the mes-
sage transmission, we also want to check how much CPU overhead
this implies. For this, we re-executed the experiment four times, go-
ing from one subscriber node, and increasing subscriber node
instances by ten at each execution. During the re-executions, we
only keep track of Node 1 energy consumption and resource usage
since it is the one that is directly affected.

5.2.1 Nodes 1 and 2. in this pair execution, Node 1 periodically
(every 0.5 seconds) publishes a message on a specific topic, while
Node 2 keeps reading the published messages. After 100 messages,
both nodes are destroyed.

5.2.2 Nodes 3 and 4. Node 3 publishes coordinates to the topic
/turtle1/cmd_vel each second, interchanging messages for a ro-
bot to be driven forward and then backward. This is repeated 50
times, which for a matter of comparison, intends to sum up the
same number of messages exchanged between Nodes 1 and 2.

5.3 Resource Profiling
We profile the energy consumption with a customized Python that
relies on pyRAPL library9. In the script, a pyRAPL measurement
wraps up the algorithm launching command and, therefore, con-
siders its global energy consumption, including ros2 run orches-
tration. Our script measurements have been validated against the
ones from an existing RAPL-based tool by Pereira et al. [17]. We
opt for customizing our own script for a matter of maintenance and
adaptation. pyRAPL also counts the node’s total execution time.

9https://pypi.org/project/pyRAPL/

For CPU usage, we rely on ps Linux command10 and calculate
the average CPU usage for each node execution while repeating it
until the node execution completion. We use a similar approach for
memory by using the pmap Linux command11.

5.4 Data Analysis
To facilitate our analysis, we first explore the distribution of power
consumption for both groups visually with data plotting. In our
data analysis, for each of the ROS nodes experimented, we aim to
investigate potential differences in energy efficiency (energy and
power consumption) against two primary independent variables,
the programming languages Python and C++, using the one-way
ANOVA test. The null hypothesis (𝐻0) posits that there is no sig-
nificant difference in the mean energy and power consumption
between these two groups, while the alternative hypothesis (𝐻1)
suggests otherwise. Our objective is to rigorously test these hy-
potheses to determine whether the programming language used
has an impact on power consumption.

6 RESULTS
This section presents the results of the experiments according to
their grouped execution.

6.1 Nodes 1 and 2
Figure 2a illustrates the power consumption of Nodes 1 (n1/publisher)
and 2 (n2/subscriber) with only one instance of n2. Despite the mea-
surements resulting in boxplots that cover nearer areas, their mean
values point nodes written in Python consume less energy than
the ones written in C++. This differs from previous research in the
area of programming language energy efficiency [17] that pointed
C++ as one of the most energy-efficient languages. However, it
is understandable considering that both run on top of ROS stack,
sharing basically the same underlying software layers, which’ en-
ergy consumption is aggregated in the measurements. In this case,

10https://man7.org/linux/man-pages/man1/ps.1.html
11https://man7.org/linux/man-pages/man1/pmap.1.html

4

https://pypi.org/project/pyRAPL/
https://man7.org/linux/man-pages/man1/ps.1.html
https://man7.org/linux/man-pages/man1/pmap.1.html


Energy Efficiency of ROS Nodes in Different Languages: Publisher–Subscriber Case Studies RoSE ’24, April 15, 2024, Lisbon, Portugal

the language should have little impact for such a simple commu-
nication as in the experiment. Furthermore, the one-way ANOVA
test results in a p-value of 0.3103, which is considerably higher
than the significance level, and fails to reject the null hypothesis.
This indicates that the power consumption of both languages is
close when with a single subscriber, where we cannot statistically
confirm any of the languages is more energy-efficient in that case.
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(a) Distribution of power consumption (mW) with 1 subscriber.
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(b) Distribution of power consumption (mW) of n1 with 10 subscribers (n2 in-
stances).

Figure 2: Power consumption of Nodes 1 (n1) and 2 (n2).

As explained in the experiment execution section, we also experi-
ment n1with multiple n2 instances to verify its power consumption
scalability. In Figure 3, we observe that the power consumption con-
verges as the number of n2 instances increases, when C++ becomes
more energy-efficient, and the power consumption difference is
visually perceptible. Since each subscriber requires the publisher to
create a new thread, a plausible reason for the Python scalability is-
sue is its well-known inefficient multi-threading implementation12.
This is confirmed in Figure 2b, which shows the measurement
distribution with 10 n2 nodes. For that experiment execution, the
one-way ANOVA test results in a 0.0002 p-value, which successfully
rejects the null hypothesis, and confirms our observation.

A further investigation indicates that the energy efficiency dif-
ference between the two languages may not be strictly related to
the CPU and memory usage, which are the determinant factors in
other research [9, 17]. Figure 4 illustrates the CPU and memory
12https://blog.devgenius.io/why-is-multi-threaded-python-so-slow-f032757f72dc
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Figure 3: Power consumption scalability for Node 1.

usage for multiple subscribers (n2 nodes). We observe that mem-
ory usage increases slightly for both languages and the difference
remains consistent and does not compare to their power consump-
tion growth. In contrast, the CPU usage difference decreases as
the number of n2 nodes increases and both become the same with
30 n2 nodes. This may also be related to a better efficiency of C++
multi-threading, resulting in better use of multiple CPU cores. The
results indicate that the energy efficiency may be related to other
aspects besides the programming languages, including the client
libraries (rclpy and rclcpp) architectures.

By using the perf top tool during a complete experiment exe-
cution, we notice that while C++ uses a total of 12 shared objects
while Python uses 17. This may be one of the causes of increased
energy/power consumption due to architectural characteristics,
such as system-level and instruction cache usage, code path among
objects, and idle time. This tends to be more intensive as the num-
ber of subscribers increases, since objects related to libraries such
as libfastrtps, necessary for inter-nodes communication, are
requested more frequently.
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Figure 4: CPU and memory scalability of Node 1.

6.2 Nodes 3 and 4
Figure 5 illustrates the power consumption distribution for both, n3
and n4 with one instance each. We observe a consistent difference,
where the nodes programmed in the C++ language consume less
energy. In Figure 6, we observe that for n3 the difference is constant
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even when the number of n4 node instances increases. After run-
ning the one-way ANOVA test we have a p-value equal to 0.0000,
which rejects the null hypothesis and confirms our observation,
indicating a statistically significant difference in the mean power
consumption between the two groups. Different than for n1, the
difference seems to stabilize from 10 subscribers.
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Figure 5: Power consumption (mW) of Nodes 3 (n3) and 4 (n4)
with one instance each.
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Figure 6: Power consumption scalability of Node 3.

In Figure 7, we observe that CPU and memory decrease as the
number of subscribers increases, which is later discovered to be due
to overloading. A further investigation reveals high CPU waiting
rates from 10 n4 nodes, which indicates a processing bottleneck.
For instance, C++ nodes result in the following CPU waiting rates:
30% with 10 n4 nodes; 55% with 20 n4 nodes; and 65% with 30 n4
nodes. With Python nodes, the overload seems to be even worse,
where the waiting rates start with 45% with 10 n4 nodes and goes
up 75% with 30 n4 nodes.

It is important to state that after identifying this, we planned
to run another round of experiments with fewer subscribers, in-
creasing one by one. However, this is not possible since even with
2 subscribers we already face waiting rates of 0.55%.

Despite the inconclusiveness of the experiment due to overload-
ing, we also observe in this experiment that the power consumption
is not strictly dependent on CPU and memory usage. The CPU wait-
ing rates suggest that despite Python starting with a better CPU
performance than C++, it tends to result in worse scalability as the
publisher node needs to deal with more subscribers.
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Figure 7: CPU and memory scalability of Node 3.

The identified overloading corroborates with Figure 6, which
shows that after 10 n4 instances the power consumption stabilizes,
consistently related to the lack of CPU power. When we investigate
deeper into process shared objects, such as in the previous experi-
ment, we observe a difference in the number of objects: 17 for C++
and 20 for Python. If compared with the previous experiment, the
increased number of shared objects is related to geometry_msgs
libraries, more numerous than for std_msgs one. This can be ex-
plained by the more complex data structures, which require special-
ized computation to serialize and deserialize messages transmitted
over the network. The serialization/deserialization of such complex
messages also explains the high CPU usage.

7 DISCUSSION
The experimental results provide valuable insights into the energy
efficiency of ROS nodes programmed with different languages. The
discussion sectionwill focus on interpreting the results and drawing
conclusions based on the findings.
Energy Efficiency of ROS Nodes: The experiment revealed that
the energy efficiency of ROS nodes is indeed influenced by the
choice of programming language. Contrary to previous research,
which pointed to C++ as one of the most energy-efficient languages,
the current study found that for ROS it may not be always the case
since nodes in both languages resulted in similar power consump-
tion in some simple publisher/subscriber scenarios. However, in
more complex scenarios, going from 10 subscriber nodes and more
complex message formats, C++ is still the language programming
with better energy efficiency.
Impact of Underlying Software Stack: The results also shed
light on the influence of the underlying software stack, particularly
the ROS client libraries (rclcpp and rclpy), on the energy efficiency
of ROS nodes. It was observed that the energy consumption was
closely related to the architectural aspects of the client libraries,
with C++ nodes demonstrating better energy efficiency. This sug-
gests that the design and implementation of the client libraries play
a crucial role in determining the energy efficiency of ROS nodes.
Practical Significance: While statistical significance is essential
for hypothesis testing, practical significance is also crucial in de-
termining the real-world impact of the findings. The experiment
demonstrated that choosing C++ over Python as a programming
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language when implementing ROS nodes results in significant en-
ergy savings over time. Considering the first experiment, from
10 subscribers, Node 1 in C++ demonstrates a better energy effi-
ciency. Choosing that node would reduce the power consumption
in ≈ 0.36𝑚𝑊ℎ (milliwatt-hours, if we consider it runs for one hour),
which for a matter of comparison, would be enough to light up a
1𝑊 lamp for ≈ 22 minutes. This number becomes exponential, and
therefore, more significant if we think of a large robotic system,
with multiple robots, each of them relying on multiple topics, or
even hundreds of robotic systems relying on C++ nodes. This be-
comes more significant if we think that implementing ROS nodes
in C++ is very similar to in Python, despite the difficulties of the
languages themselves, and that both languages rely on the same
underlying software stack. Therefore, it is a very basic and initial
design decision that directly contributes to the robotic system’s
energy efficiency.

7.1 Answering the Research Questions
Based on the result analysis, we can answer the research questions.
Answer of Research Question 1: the experiments reveal that the
choice of programming language, specifically C++ and Python, has
an impact on the energy efficiency of ROS nodes. We observe that
C++ is the most energy-efficient language when programming ROS
nodes that communicate over topics. However, the difference is not
as significant as in other studies with algorithms that run without
an underlying framework (i.e., ROS). In a very simple scenario with
textual messages and only one subscriber, Python even seems to
consume less power, despite no statistical significance. In both ex-
periments, CPU and memory usage scale differently than the power
consumption, which indicates that there is no direct correlation
among them. One of the determinant factors may be the underlying
software layers, which is discussed while answering RQ2.
Answer of Research Question 2: the results emphasized the
significant influence of the underlying software stack, particularly
the ROS client libraries (rclcpp and rclpy), on the energy con-
sumption of ROS nodes. The design and implementation of the
client libraries are determinant factors for the energy efficiency
of ROS nodes. Ground-truth programming language theory puts
Python as a language with high levels of abstraction, which is given
it overlaying other low-level languages, including C. We identified
that its client library (i.e, rclpy) also relies on a greater number of
shared underlying objects than rclcpp. As discussed in the results
section, this is a reasonable explanation of the increased power
consumption for nodes implemented with it.

The importance of a correct client library design is reinforced in
some ROS Discourse discussions. For instance, one of those helped
us with a workaround solution when we faced unexpected CPU
overloading during the experiment executions13. The solution was
to use a static-single-threaded spinning for rclcpp14, which is offi-
cially available since 2020 and documented on ROS Documentation
forum15. Despite the intense discussion, we did not identify any
mention of how poor ROS client library design could compromise

13https://discourse.ros.org/t/singlethreadedexecutor-creates-a-high-cpu-overhead-
in-ros-2/10077
14https://github.com/ros2/rclcpp/pull/873
15https://docs.ros.org/en/foxy/Concepts/About-Executors.html

energy efficiency. This indicates that the current study and pos-
sible extensions can help the ROS community to develop more
energy-efficient software.

8 THREATS TO VALIDITY
Here, we discuss the threats to the validity of the experiments.

8.1 External Validity
The generalizability of the findings may be limited due to the spe-
cific nature of the ROS nodes and the chosen algorithms. The results
may not be applicable to all types of ROS-based systems and may
not fully represent the energy efficiency of more complex robotic
applications. However, it brings important insights into the most
common communication in the ROS system, the publish/subscribe
architecture.

8.2 Internal Validity
The internal validity has been guaranteed by a strictly controlled
environment, aiming at mitigating variations in system load, back-
ground processes, or hardware differences. Their impact is also
tackled by repeating the experiments a hundred times.

The tools and libraries for measurements have been thoroughly
used in previous research [8, 12, 24, 26]. The measurements of the
only customized tool, the one for energy and power consumption,
are validated against the measurements of another tool also used
in previous research.

The experiment focused on the energy efficiency of ROS nodes
programmed with different languages, but the influence of the un-
derlying client library architecture (rclcpp and rclpy) on energy
consumption may not have been fully isolated from the language-
specific effects. This should not be a problem since the languages
imply the use of such libraries and we also analyze their potential
impact on the measurements.

The observed overloading issues with CPU usage and memory
may have impacted the results, potentially confounding the compar-
ison of energy efficiency between C++ and Python nodes. Therefore,
the results of that experiment were considered inconclusive and
their discussion is used only for a matter of instigation of new
experiments that can prove the raised hypothesis.

8.3 Construct Validity
The experiments are carefully planned and executed with metrics
that are representative of this type of work [8, 17]. The power
consumption metric plays a crucial role in construct validity by
providing a direct measure of the rate at which energy is consumed
when running the ROS nodes. It can capture subtle differences
in energy efficiency resulting from language-specific factors and
underlying software architecture and is not confused by other de-
pendent variables, such as the execution time.

9 RELATEDWORK
The energy efficiency of software has been a recurrent matter of
investigation in recent years, going from deployment infrastruc-
tures to programming languages [23], which is more aligned with
the interests of this paper’s research. To the best of our knowledge
after a search on the main research indexers, there is no previous
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work that studies the energy efficiency of programming languages
in the ROS ecosystem context.

Pereira et al. [17] conducted a large study that most resembles
ours, where they experiment with a set of different algorithms pro-
grammed with 27 of the most popular programming languages.
Their work also led to a rank of the most energy-efficient program-
ming languages [18]. Despite the purpose of the research being
similar to our approach, the nature of the studied algorithms is
very distinct. Our algorithms are ROS domain-specific, where the
algorithms depend on a running underlying ROS stack, while the
authors consider a set of diverse programming problems, which
run natively, without any middleware or framework layer.

Other studies with fewer similarities with ours investigate the
energy efficiency of specific programming languages in varied con-
texts [10, 14]. Others focus on other aspects of the programming
language, such as the compiler [1] or programming paradigm [16].

10 CONCLUSION
In this paper, we start an investigation of how the chosen program-
ming language may impact the energy efficiency of a ROS system.
We lead two pairs of ROS nodes to repeatedly exchange messages
over a publish/subscribe communication pattern while measuring
CPU and memory usage and each node’s power consumption.

The experiment results indicate that for simple communication
scenarios with only one subscriber, there is no significant difference
between the two studied languages, i.e., C++ and Python. However,
with multiple subscribers, the C++ client library becomes more
energy efficient and scales better, which we reason to be related
to native multi-threading implementation. Therefore, the choice
of programming language must be one of the preliminary points
to be discussed in ROS projects that want to achieve good energy
efficiency. The results also reveal that programming language client
libraries’ design may compromise energy efficiency directly, where
their broader discussion among development teams could also help
in making robotic systems more energy efficient.

Future work should focus on a deeper investigation of the en-
ergy efficiency of ROS nodes with more complex scenarios. Such
scenarios could, for instance, involve services, action servers, multi-
threading, and compositions. Additionally, it is also important to
have a further and more detailed understanding of the architectural
aspects of each of the client libraries.
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