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ABSTRACT
Large-scale manufacturing necessitates automation, and robotic au-
tomation has emerged as a primary solution. Traditionally, robotic
systems are designed for fixed assembly lines dedicated to specific
product sets. However, with an increasing demand for specialized
and customized products, there is a growing need for more agile
manufacturing processes. To address this, we introduce a robotic
assembly framework capable of generating assembly plans directly
from RGB-D video demonstrations. We develop a pose estimation
model to capture changes in object poses. We demonstrate its effec-
tiveness in the robotic assembly of IKEA furniture, emphasizing its
precision in managing assembly tasks.

CCS CONCEPTS
• Computing methodologies → Robotic planning; Vision for
robotics; Activity recognition and understanding.

KEYWORDS
Robotic Assembly, Learning from Demonstration, Plan Generation

ACM Reference Format:
Abhinav Upadhyay, Alpana Dubey, and Shubhashis Sengupta. 2024. Ro-
MaViD: Learning Robotic Manipulation from Video Demonstrations. In
2024 ACM/IEEE 6th International Workshop on Robotics Software Engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RoSE ’24, April 15, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0566-3/24/04
https://doi.org/10.1145/3643663.3643966

(RoSE ’24), April 15, 2024, Lisbon, Portugal.ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3643663.3643966

1 INTRODUCTION
In the rapidly advancing landscape of robotics systems, particu-
larly in the manufacturing sector, there has been a significant surge
in the utilization of robots for intricate tasks. The manufacturing
industry, in particular, has harnessed the potential of robots exten-
sively to execute a myriad of repetitive functions, with a significant
surge in the deployment of arm robots for assembly tasks. While
these achievements mark substantial progress, the current empha-
sis has shifted towards achieving true agility in robotic assembly,
especially considering that motion and manipulation planning for
robots is often pre-determined for a fixed set of product assem-
blies, particularly in cellular manufacturing. There is a need for
autonomous robotic assembly systems that can dynamically adapt
to different products.

In this work, we present a robotic assembly framework that lever-
ages RGB-D video demonstrations for product assembly planning.
Our novel approach identifies objects and actions from assembly
videos, enabling the generation of effective assembly plans. We
predict the 6-DoF pose of objects with respect to the video frame
and transform them to pose with respect to the experimental set-up
frame. We use our framework to demonstrate the robotic assembly
of IKEA furniture. Our contributions can be summarised as follows:

• We propose a novel Hierarchical Swin Transformer network
for the identification of both objects and actions from a video
demonstration.

• We propose a 6-DoF pose estimation model to track the
change in the pose of objects in the video.

• A pose interpretation method to transform the pose values
from the video frame to the experimental set-up frame.
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Figure 2: Hierarchical Swin Transformer network to predict the actions performed & identify the different objects in the video.

2 RELATEDWORK
Robotic assembly is an active area of research. Many studies have
been conducted for performing autonomous robotic assembly. These
studies involve methods for extracting and representing assembly
details from sources such as videos, graphical manuals or CAD
files [17]. Zakka et al. [21] use a reinforcement learning approach
for the robotic assembly of kits. The approach utilizes three mod-
ules – the suction module to predict picking locations, the placing
module to predict placing locations and the matching module to
match objects to their placing locations. Paulius et al. [12] propose
Functional Object-Oriented Network (FOON) to represent human
activities and manipulations. They manually construct these func-
tional units by labeling cooking instructional videos. Haage et al.
[5] propose an interface for robotic assembly from RGB-D videos.
Object detection and pose estimation of the hands are performed
to generate keyframes. Wan et al. [19] propose a human teaching
and a robot execution phase. In the human teaching phase, object
detection is followed by reading AR markers to determine the pose.
The robot execution phase involves object detection, pose estima-
tion, heuristic-based grasp planning, and motion planning. Sera
et al. [16] use graphical instruction manuals for robotic assembly
and perform task planning by generating Assembly Task Sequence
Graphs (ATSG). The ATSG is a directed graph representing the
assembly procedure through the actions involved between objects.

Our approach is different from the aforementioned works along
two aspects

(1) Our novel approach identifies objects and actions from com-
plex assembly video demonstrations to generate assembly
plans. Our approach can effectively generate complex assem-
bly plans for multiple parts interactions.

(2) Our approach does not require April tags [19][8] or manu-
ally provided pose values [16] for detecting the 6-DoF pose
of objects in a video or real-world frame. We propose a deep

neural network to predict the 6-DoF pose of objects in com-
plex and cluttered scenes and even in occluded scenarios.

3 APPROACH
In this section, we describe our robotic manipulation framework
(as shown in Figure 1). The framework consists of three modules:

(1) Assembly plan generation: For each frame in the video,
we detect the objects and the actions performed on them.
Then, we generate a assembly plan representing the objects
and actions. The assembly plan is a directed graph with two
types of nodes - object nodes and action nodes.

(2) Pose estimation: We perform the 6-DoF pose estimation
for the objects in the video. This module provides the pose
of objects in their assembled state and the pose changes
involved in reaching that state.

(3) Pose interpretation and motion planning: The pose val-
ues obtained from the previous module are with respect to
the video frame. These values are transformed to our ex-
perimental set-up frame using real-time RGB-D data. The
robot replicates the assembly using the assembly plan and
the transformed pose values. Motion planning is performed
to navigate the experimental set-up.

3.1 Assembly Plan Generation
Initially, we discuss the network designed for action prediction and
object identification within video frames. Subsequently, we outline
an approach for generating assembly plan based on the identified
actions and objects.

We present a novel Hierarchical Fusion Swin Transformer net-
work designed for action prediction and object identification from
video demonstrations (as shown in Figure 2). Our contribution lies
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Figure 3: Hierarchical Fusion Swin-T network
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Figure 4: A Hierarchical Feature Fusion module integrated after each Swin Transformer block, to enhance the extraction of
both local features and global correlations. This module applies convolutions to feature maps generated by preceding stages.

in the introduction of a hierarchical feature fusion module, facili-
tating the aggregation of features at various stages. We represent
video𝑉 as a sequence of frames, denoted as𝑉 = {𝑋1,𝑋2,...,𝑋𝑇 }. Each
input frame is divided into fixed-sized, non-overlapping patches
(4 ∗ 4 in our case) using a patch-splitting module. Each patch is
considered as a “token," and its feature representation is generated
by combining pixel values and passing the raw features to a linear
embedding layer, which transforms them into a fixed dimension.
The Swin Transformer block (as shown in Figure 3) analyzes these
patches, extracting multi-level features at resolutions correspond-
ing to 1/4, 1/8, 1/16, and 1/32 of the original image. Downsampling
and upsampling operations on the feature maps are carried out
by patch merging and patch expanding blocks, respectively. In the
Swin Transformer, patch merging takes place at each stage, bring-
ing together feature maps from the previous stage. This process

involves grouping neighboring patches to create larger spatial re-
gions, generating new feature maps that are both spatially accurate
and semantically enriched.

The Swin Transformer model faces a significant limitation in
terms of inter-stage interaction among feature maps with differ-
ent scales or resolutions [11]. The lack of a direct communication
mechanism hinders the model’s ability to capture global context
and dependencies across images. To address this constraint, our
proposed solution introduces a novel Hierarchical Feature Fusion
Module (as shown in Figure 4) after each Swin Transformer block.
This module aims to enhance the extraction of both local features
and global correlations by strategically convoluting feature maps
from preceding stages. At each stage, except Stage 1, we aggregate
multi-level features by applying convolution to feature maps from
the current stage and the preceding stages. For example, in Stage 4,
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Figure 5: Pose estimation network

convolution is applied to feature maps from Stage 1 (Conv 8 ∗ 8),
Stage 2 (Conv 4 ∗ 4), and Stage 3 (Conv 2 ∗ 2). Subsequently, these
feature maps are combined with the Stage 4 feature map. The Hi-
erarchical Fusion Network Block acts as a channel to facilitate the
exchange of information between feature maps of varying resolu-
tions. This approach ensures the combination of multi-level feature
maps from each stage, resulting in the generation of spatially and
semantically enriched information.

The segmentationmask is generated by passing the concatenated
feature to a sequence of operations, which includes an MLP layer,
a Patch Expanding block, and a Convolutional block. The multi-
level features obtained from the fusion module undergo channel
dimension unification through an MLP layer. Subsequently, these
features are upsampled to 1/4th of their original size using a Patch
Expanding block and then combined. Finally, a convolutional layer
with a 1x1 kernel processes the fused feature to predict the seg-
mentation mask, denoted as𝑀 , with a resolution of 𝐻

4 x 𝑊
4 x 𝑁𝑐𝑙𝑠 ,

where 𝑁𝑐𝑙𝑠 represents the number of segmentation classes.
Generating Assembly Plan: To generate the assembly plan, we

leverage the concept of functional object-oriented network (FOON)
[12]. The Functional Object-Oriented Network (FOON) is a concep-
tual framework designed to represent and organize activities within
a task, particularly in the context of assembly planning. It takes
the form of a directed graph, comprising two primary node types:
object nodes and action nodes. Object nodes represent entities in-
volved in activities, such as leg, side panel, shelf, and drawer, while
action nodes represent specific actions that can be performed on
the objects, such as attach, align, rotate, and connect. The FOON’s
structure facilitates the depiction of the sequential flow of activities,
with certain nodes being outcomes resulting from the interaction
between others. Edges, denoted as E, connect nodes, signifying the
relationships and dependencies between objects and actions in the
assembly process.

The assembly graph generation algorithm comprises the follow-
ing steps:

(1) The model predicts actions and identifies objects for every
frame within the video.

(2) The generated information is structured and saved in a JSON
file, encapsulating the actions and objects corresponding to
each frame.

(3) The algorithm iterates through frames in the video, extract-
ing predicted actions and objects for each frame from the
JSON file while eliminating redundant outputs observed
across multiple frames.

(4) Employing the Functional Object-Oriented Network (FOON)
concept, the algorithm constructs a graph characterized by
a bipartite structure.

3.2 Pose Estimation
Our goal is to estimate the 6-DoF pose of objects present in video
demonstrations and then transform the pose of the object with
reference to the camera coordinate frame in the experimental set-
up. Formally, a 6-DoF pose 𝑝 is represented as a rotation 𝑅 and a
translation 𝑡 , 𝑝 = [𝑅 |𝑡]. As we estimate the 6-DoF pose of the objects
from the frames in the video, the poses are defined with respect
to the camera coordinate frame. The network for pose estimation
from a video is shown in Figure 5. Our pose estimation network is
inspired from [20] with two changes to the network - (a) Processing
of 3D point cloud object is implemented using modified PointNet++
[13] rather than PointNet, and (b) Implemented fusion strategy for
segmented point cloud and image map.

The network takes an RGB-D image as an input and generates
segmentation masks for each object category. Then, the segmented
mask is passed through the encoder-decoder network to gener-
ate pixel embedding. For each object, we feed the 3D point cloud
(obtained from depth pixels) to PointNet++ [13] network to gener-
ate point (geometry) embedding. The pixel and point embeddings
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are fused at each pixel level using the Point-Pixel fusion network.
The pose predictor module predicts 6-DoF pose values along with
the confidence score using point-pixel features. We discuss these
modules in detail.

Figure 6: The position of the table top with respect to the
video demonstration (frame 1) and the experimental set-up
(frame 2).

3.2.1 Object Segmentation. WeuseHierarchical Fusion Swin Trans-
former network to segment different objects in the scene. For details,
please refer Section 3.1.

3.2.2 Geometry (Point) Embedding - PointNet++. We propose a
variant of PointNet++ [13] as a geometric embedding network that
generates a per-point feature by mapping each of the 𝑛 segmented
points to a 𝑑𝑔𝑒𝑜 -dimensional feature space. The network maps a
point cloud object 𝑛 × 3 into a 𝑛 × 𝑑𝑔𝑒𝑜 (where 𝑛 is the number
of points in the segmented point cloud object and 𝑑𝑔𝑒𝑜 is the em-
bedding size, 1024 in our case) embedding space. PointNet++ has
proven to be effective for 3D classification and segmentation [13].
PointNet++ uses multi-scale grouping (MSG) [13] that learns multi-
scale features using multiple groups of weights. To capture more
efficient geometric relations, we apply three-scale neighborhoods
centered on a sampled point with a shared weight.

3.2.3 Pixel (RGB) Embedding. Weuse a CNN-based Encoder-decoder
architecture as a pixel (RGB) embedding network that generates
a per-pixel feature by mapping an image of the size of 𝐻 x𝑊 x 3
to 𝐻 x𝑊 x 𝑑𝑝𝑖 (where 𝑑𝑝𝑖 is the embedding size, 1024 in our case)
embedding space.

3.2.4 Point-Pixel Fusion. The pixel and point embeddings obtained
from the image and the 3D point cloud respectively need to fuse
effectively to represent the feature space to handle occlusion and
imperfect segmentation [20][7]. Point-Pixel fusion consists of two
components - Pixel-to-point fusion and Point-to-pixel fusion.

Pixel-to-point fusion combines RGB (pixel) features to point
cloud features. For each point feature, we find its K-nearest points
in the pixel map and their corresponding feature embeddings. These
feature embeddings are then passed through max pooling and a
shared MLP to obtain the pixel feature.

𝐹𝑝𝑖2𝑝 = 𝑀𝐿𝑃 (𝑚𝑎𝑥 (𝐹𝑝𝑖 );∀𝐾 ∈ 𝐾𝑝𝑖 ) (1)

where 𝐹𝑝𝑖 are the feature embeddings of the K-nearest points in
a pixel (RGB) map.

Finally, a shared MLP is applied to the concatenation of pixel
and point features to obtain the fused point feature (𝐹𝑓 𝑝 ).

𝐹𝑓 𝑝 = 𝑀𝐿𝑃 (𝐹𝑝 ⊕ 𝐹𝑝𝑖2𝑝 ) (2)
Similar to pixel-to-point fusion, the point-to-pixel fusion mod-

ules obtain fused pixel features (𝐹𝑓 𝑝𝑖 ).

𝐹𝑝2𝑝𝑖 = 𝑀𝐿𝑃 (𝑚𝑎𝑥 (𝐹𝑝 );∀𝐾 ∈ 𝐾𝑝 ) (3)
where 𝐹𝑝 are the feature embeddings of the K-nearest points in

a point (geometry) map.

𝐹𝑓 𝑝𝑖 = 𝑀𝐿𝑃 (𝐹𝑝𝑖 ⊕ 𝐹𝑝2𝑝𝑖 ) (4)
The point-pixel fusion features are then passed through MLP

and pooling layers to generate a fixed-size global feature vector.
The global feature vector is concatenated with each of the point-
pixel features to provide global context. The resulting point-pixel
features are then passed through MLP layers to predict a set of 𝑁
poses, one for each point-pixel feature, along with a confidence
score 𝑐𝑖 for each prediction.

Training Objective:We apply point-pixel loss [20] as the train-
ing objective, which measures the distance between the points
sampled on the objects model in the ground truth pose and the cor-
responding points on the same model transformed by the predicted
pose.

3.3 Pose Interpretation and Motion Planning
The pose values observed in the assembly plan are predicted by
the pose estimation network with respect to the camera frame of
the video demonstration (frame 1). These values cannot be directly
used to replicate the pose change for the camera frame of our exper-
imental set-up (frame 2). For the experiment, we assume that the
initial position of the table top with respect to the real-world frame
has remained unchanged. The camera has undergone a positional
displacement that has resulted in the two frames as shown in Figure
6. This assumption is used to calculate the transformation matrix,
which in turn used to obtain the pose values with respect to our
experimental set-up.

In Figure 6, the pose of the table top with respect to frame 1
can be denoted as 𝑡1, 𝑅1 where 𝑡1 is the 3D translation and 𝑅1 is
the rotation matrix defining the orientation. 𝑡2, 𝑅2 is the pose with
respect to frame 2. The relative 3D translation and orientation of
frame 2 with respect to frame 1 is calculated [15] using

𝑡1 = 𝑡2
1 + 𝑡2 (5)

𝑅1 = 𝑅2
1𝑅2 (6)

𝑡1 was obtained from the assembly plan. 𝑅1 was calculated us-
ing the quaternion values from the assembly plan. 𝑡2 and 𝑅2 for
the experimental set-up were calculated using the known camera
parameters.

For frame 2 with respect to frame 1, the transformation matrix
can be denoted in terms of the rotation matrix and 3D translation
[15] as

𝑇2
1 =

[
𝑅21 𝑡21

000 1

]
(7)

21



RoSE ’24, April 15, 2024, Lisbon, Portugal Upadhyay et al.

Video demonstration
(frames)

Assembly Graph

Figure 7: The assembly plan generated for an IKEA side table (partly shown here).

The pose values 𝑃2 for the experimental set-up, are calculated
from the pose values 𝑃1 in the assembly plan using the transforma-
tion matrix 𝑇21 as

𝑃1 = 𝑇2
1𝑃2 (8)

Only the optimal pose of the assembled parts from the assembly
plan is transformed to the experimental set-up frame.

We use RRT connect [9] for motion planning.

4 EVALUATION AND IMPLEMENTATION
4.1 Dataset
The IKEA ASM dataset comprises 371 distinct assemblies featuring
four furniture types: side table, coffee table, TV bench, and drawer,
accompanied by pose information [1]. In total, there are 1113 RGB
videos and 371 depth videos (top view). The dataset encompasses
3,046,977 frames (∼35.27h) of footage, averaging 2735.2 frames per
video (∼1.89min). With a total of 16,764 annotated actions, the
dataset exhibits an average of 150 frames per action (∼6sec).

4.2 Evaluation
4.2.1 Action Recognition. We assess our action recognition ap-
proach using three metrics [1]: (i) Frame-wise accuracy (FA): It
represents the fraction of correctly classified frames over the total
frames in each video, averaged across all videos in the test set, (ii)
Macro-recall: Due to the dataset’s imbalance, we compute macro-
recall by calculating recall for each category separately and then

Table 1: Performance of our approach along three metrics
and comparison with baseline

Approaches Frame accuracy M-recall mAPTop 1 Top 3
ResNet18 [1] 27.06 55.14 21.95 11.69

ResNet50 [6][1] 30.38 56.1 20.03 9.47
C3D [18][1] 45.73 69.56 32.48 21.98
I3D [2][1] 57.57 76.55 39.34 28.59
P3D [14][1] 60.4 81.07 45.21 29.86
TSM [10] 63.52 84.2 50.36 34.72
Ours 75.18 92.41 69.52 56.34

Table 2: Performance of our segmentation approach (on the
testing dataset) along two metrics and comparison with base-
lines

Approach Mean Accuracy Mean IoU
PSPNet [22] 0.63 0.6
DeepLabV3+ [3] 0.72 0.68
Swin-T [11] 0.81 0.72
Ours 0.9 0.83

averaging it., and (iii)Mean average precision (mAP): Since all
videos have multiple action labels, we compute the mean Average
Precision, which is calculated by taking the mean Average Precision
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Figure 8: Robotic execution of assembly of an IKEA table. The sub-figures correspond to different steps of the Assembly plan
(due to space constraints, only a subset of the steps are shown here).

Table 3: Quantitative evaluation of 6-DoF pose on IKEA ASM
dataset. Metrics capture the mean score along all the objects.

Approaches AUC ADD-S<1cm
PoseCNN [4] 82.2 83.1
DesneFusion [20] 86.3 87.8
Ours 91.2 93.4

over all classes. Table 1 presents the performance of our approach
based on these metrics on the IKEA ASM [1] dataset.

4.2.2 Part Segmentation. We assess the effectiveness of our seg-
mentation approach using two key metrics: (a) Mean accuracy,
which represents the proportion of correctly classified pixels aver-
aged across all classes, and (b) Mean intersection over union (IoU),
indicating the overlap area between predicted and ground truth
pixels averaged over classes. The performance of our segmentation
approach is presented in Table 2 with respect to these metrics.

We compare our approach with existing baselines, namely PSP-
Net [22], DeepLabv3+ [3], and Swin-T [11], across these twometrics.
Our results demonstrate a notable improvement, with a 11% increase
in Mean Accuracy and an 15% increase in Mean IoU compared to
[11].

The assembly plan generated for an IKEA side table is shown in
Figure 7.

4.2.3 Pose Estimation. We use two metrics [20] to evaluate our
pose estimation approach - (a) ADD-S curve (AUC): ADD-S com-
putes the mean distance from each 3D model point transformed
by predicted pose [𝑅 |𝑡] to its closest neighbor on the target model
transformed by ground truth pose [𝑅 |𝑡]. We report the area under
the ADD-S curve (AUC) and set the maximum threshold of AUC
to be 0.1m. (b) ADD-S < 1𝑐𝑚: We report the percentage of ADD-S
smaller than 1𝑐𝑚, which measures the predictions under the mini-
mum tolerance for robot manipulation (1cm for most of the robot
grippers). Table 3 shows the performance of our pose estimation
approach.

4.3 Implementation
The robotic assembly framework assembles an IKEA side table
(35cm x 35cm) using a UR5e arm robot equipped with a Robotiq
2F-140 gripper. Real-time RGB and depth data are obtained through
a Microsoft Kinect v1, positioned 1 meter from the bottom-right
corner of the setup, facing the workbench. The depth data is crucial
for extracting pose and size information of items on the table and
for collision avoidance.

In the implementation, depicted in Figure 8, the UR5e robot starts
in the zero-position, with all joint positions set to 0 and the gripper
fully open. IKEA furniture parts are randomly placed on the table,
and their poses and dimensions are computed using real-time depth
data. Assembly actions are iteratively extracted from the assembly
plan (stored as a JSON file). The robot then executes these actions
on the parts.

5 CONCLUSION
In this work, we present a novel approach, the Hierarchical Swin
Transformer network, designed to predict actions and identify ob-
jects within videos demonstrating furniture assembly. We employ
the Functional Object-Oriented Network concept to automatically
generate assembly plans. Additionally, we develop a pose estima-
tion model to accurately capture variations in the objects’ poses.
Our framework is utilized to demonstrate the robotic assembly of
IKEA furniture, and the results underscore the efficacy of our pro-
posed approach in addressing robotic assembly tasks. Furthermore,
our method can be easily generalized for other manipulation tasks,
such as disassembly, troubleshooting, etc.
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