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ABSTRACT
Robots of today are equipped with lightweight computing resources
used merely to make the robot function. However, proportional
advancements in associated data processing and algorithms are
needed, given the significant advances in robots’ sensing and pro-
gramming capabilities and the increasingly complex tasks they
must complete.

Yet, such advancements require additional hardware resources to
function as intended. Inmany robotic applications, cloud computing
is not an option; therefore, edge computing must be embraced.

This paper proposes a sizing tool for benchmarking workloads
against pre-written tasks to determine optimal edge computing
hardware candidates used to deploy said workloads efficiently with-
out wasting resources.

Preliminary results show that the right combination of hardware
resources has an impact on workload execution.

CCS CONCEPTS
• General and reference→ General conference proceedings;
• Hardware→ Hardware test; • Computer systems organiza-
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engineering → Software infrastructure; Software architec-
tures; Software performance.
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1 INTRODUCTION
Even though robotics, as seen today, has been a significant advance-
ment in automating physical, labour-intensive workloads, novel
visions flourish to go even further. One of these visions is to auto-
mate high-mix, low-volume productions at scale within a single
manufacturing setting. To accomplish this, production lines must
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support vast numbers of configurations, even in the production of
single products.

Increasing automation cases in high-mix, low-volume produc-
tions where robots are financially viable requires innovations in the
flexibility of collaborative robots that can operate close to humans.
New sensors, data storage, and AI-based data processing are key
technologies that enable this. However, these technologies also
introduce a need for more computing and data storage capabilities
in robotic systems.

Most robots of today are equipped with minimal resources in-
tended to support the robot lifecycle, its world model and light-
weight static instructions provided by the user. Robot manufac-
turers acknowledge this and suggest augmenting completely auto-
mated Artificial Intelligence (AI) solutions with additional comput-
ing power to ensure reliable operation [14].

The Industry 4.0 (I4.0) vision presents apparent adaptation prob-
lems for future robotics, as I4.0 imposes fluidity in production and
needs highly data-driven approaches tightly tied to the real-time
state of the production line. To overcome said problems, one overar-
ching limitation has to be solved to enable deploying holistic, tech-
nically complex, and data-driven workloads. The limited resources
available on the robots and the manufacturing floor primarily im-
pose this limitation.

Executing these compute loads requires appropriate hardware.
To ensure that the system is not limited by the available hardware,
the go-to way of deploying said systems is to acquire an over-
the-top hardware setup, in which there is no doubt that enough
resources will be available. However, this approach is not cost-
effective, as the abundance of resources results in underutilised
hardware, increasing the initial purchase and maintenance cost.
This ineffective hardware utilisation is the case even for large man-
ufacturing settings that benefit from economies of scale.

Following the already flourishing cloud computing trend, a pos-
sible solution to overcome such limitations is intersecting cloud
utilisation and robotics. This idea has been named Cloud Robotics
[6], which utilises core cloud objects, such as cloud computing and
cloud storage. Here, robots have been equipped with a lightweight
on-board client that acts as an interface between the robotic edge
node and a cloud instance, which implements all the computing
and storage capabilities needed to use the robot. With cloud robot-
ics, the need for on-board resources diminishes, often resulting in
physically smaller hardware and substantial price decreases.

Yet, further research has identified flaws with the cloud-first
strategy, as processing using far-away infrastructure requires the
inefficient, high latency, low bandwidth connectivity offered by
the Wide Area Network. This proposes notable overheads that
are intolerable for real-time or distributed systems in which vast
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amounts of data must be transferred between nodes. Further at-
tributes, such as sustainability and energy efficiency, fuel the idea
that cloud-first might not be the silver bullet it is currently per-
ceived as [15]. Moreover, the inherent trust and control issues of
using "someone else’s computer" give no guarantees of how data
are handled and no absolute control, as the black-box approach,
used by cloud providers, enables excellent client isolation but no
underlying consumer explanation [8].

As a response to the centralised nature of cloud computing, a new,
decentralised computing paradigm, edge computing, has emerged,
which adopts the cloud-native way of thinking, with deployment on
edge nodes in proximity to the data source [12]. The key arguments
for the edge computing paradigm are increased bandwidth with
much lower chances of network congestion, low latency communi-
cation, and increased control over data management and computing
[13, 15].

Edge computing is especially suitable for distributed systems,
as the close-by nature of edge computing reduces both the phys-
ical and the logical end-to-end distance [8]. System distribution
further increases reliability, availability and performance as loads
are distributed amongst nodes, reducing the chances of operational
failures.

Instead, tools that accurately determine the hardware configura-
tion for deploying such software systems to execute as expected,
given predefined conditions, are needed. Implementing such strate-
gies introduces a potential reduction in both initial costs, as the
required hardware is often far less than anticipated, and operation
costs, as a reduction in hardware resources, decreases the power
needed to operate.

This paper aims to introduce a tool that supports such decision-
making based on observing software execution and evaluating it
against quality attribute-based test cases. The tool monitors the
system behaviour, state, and resource usage under given loads and
introduces data-driven decision-making.

2 DISTRIBUTION OF COMPUTING LOADS
Realising that all workloads cannot be deployed close to the data
source is nothing new. The realisation came to be as the workloads
aimed for resource-limited end devices became more and more
hardware-intensive. In 2002, research showed improved Quality of
Service (QoS) for applications utilising distant servers, to which
some of the workloads were offloaded [1]. This new paradigm intro-
duced the idea that not all workloads have to be monoliths deployed
on a singular device but could easily be split up into multiple parts,
in which each part has specialised responsibilities. As a result, the
concept of cloud computing was born, in which specialised cloud
providers deploy numerous cloud farms worldwide for consumers
to use.

With the rise of cloud computing, new challenges arise, as the
dynamic nature of the cloud and the associated load require rapid
scaling capabilities to serve value to the consumers within accept-
able response time. For this, Virtual Machines (VMs) were not
suited, as VMs require time to start, following its virtualisation
of a complete operating system with virtual resources. Moreover,
the full-fledged operating systems within VMs take up an amount

of space equivalent to that of an operating system deployed on
bare-metal infrastructure.

As an alternative to deploying VMs in the cloud, a cloud-native
approach was formed, in which workloads were isolated using a
newborn technology: containers. These were especially suited for
deployment on the edge and in the cloud, as they naturally have
a low startup time of milliseconds and share kernel with the host
operating system. Especially the kernel-sharing nature proved to
be a fundamental feature, which reduced the size notably to a few
megabytes [10].

This opened up an innovative wave of strategies for both auto-
mated, dynamic provisioning of resources and dynamic computa-
tion placement [16, 17].

While applicable in the cloud — where resources are numerous
— such strategies are less usable at the edge as resources are limited
and often chosen to match the load anticipated for such work-
load. To bridge this gap, the strategies have been augmented with
control theory-based methods to extend the strategies underlying
predictions by monitoring and comparing the actual load with the
predicted, thus regulating even further [5].

Furthermore, a plethora of existing deployment tools have been
developed, with the ability to uphold a limited set of quality at-
tributes, such as Kubernetes [7], Nomad [4], OpenStack [9] and
OpenShift [11]. These systems have features that provide attributes
such as availability and deployability through horizontal scaling
and automated rollout and rollback.

However, even with the appealing capabilities of containerised
workloads deployed in the cloud, there are underlying drawbacks
that suggest considerations should be made before utilising the
cloud as is. Utilising a distributed edge-cloud infrastructure as-
sumes that connectivity and bi-directional communication between
components deployed at both the edge and the cloud must be estab-
lished, thus imposing a security risk. Likewise, sharing workload
and generated data with cloud providers implies a level of trust in
cloud providers that is not there.

Current deployment tools cannot take a quality attribute-based
task as input, use the task on an appropriate workload, and output
a performance report suggesting hardware characteristics needed
to deploy the given case.

While provisional and scaling strategies in edge computing have
been extensively researched, little to no attention has been given to
the initial determination of usable hardware for a given workload.
This determination is essential — especially for manufacturing
settings — that purchase hardware engross. Purchasing underfitting
hardware results in repurchasing hardware that fits the purpose,
creating unnecessary costs. The purchase of overfitting hardware
results in a higher-than-necessary purchase price and subsequent
higher energy consumption. Inspired by the previous research,
this paper proposes a tool that, based on a given workload and an
accompanying task, can determine hardware characteristics that
must be met to execute the workload adequately.

3 ASSESSMENT TOOL
To design a tool for addressing the problem, we interacted with sev-
eral robotics researchers and engineers to scope out requirements.
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A proof of concept was built from these requirements to deploy
and monitor relevant robotic AI workloads.

3.1 Proof of Concept
To get an in-depth understanding of robotic AI workloads and their
associated resource usage, a Proof of Concept (PoC) has been built.
The PoC utilised heterogeneous clusters of three Kubernetes vari-
ants: Vanilla Kubernetes [7], K3s [3] and MicroK8s [2] on which a
series of distributed computer vision training tasks were deployed.
While running, the executions were monitored to get insights
into the container orchestrator’s effect on resource- and workload-
bound metrics. The workloads contained training of increasingly
larger and more complex models with larger datasets, increasing
overall resource consumption. From the PoC, several lessons have
been learned, for which future development will be considered.

Resource- and workload-bound metrics indicate categories of
metrics for which monitoring gives insights into workload execu-
tion. Resource-bound metrics are infrastructure-bound, i.e. directly
tied to hardware. Examples are CPU Usage, Memory Usage, Disk
R/W and Network Tx/Rx. Workload-bound metrics are metrics
specified for the execution of a specific workload. For ML training
workloads, accuracy and precision could be of interest. For ML
inference, accuracy and throughput could be of interest.

At execution, workloads will fill out whatever resources are
available as workloads, and the arbitrary frameworks they are built
upon are designed to optimise the usage of available resources.
This often results in similar readings of resource-bound metrics,
indicating similar resource consumption in percentage, regardless
of the underlying infrastructure. For some workloads, the extra
resources are well-spent and utilised to generate more precise or
faster outputs. But for other workloads, the extra resources result
in accurate outputs, with response times similar to that without
the extra resources. This observation highlights the importance
of measuring both resource- and workload-bound metrics to get a
holistic understanding of workload execution.

The underlying infrastructure on which a workload is deployed
significantly impacts workload output. Even though Kubernetes,
K3s, and Microk8s all provide the same functionality, they each
have substantial differences in their resource footprint. Further
observations show that deployed workloads on said infrastructure
yield different results, both in resource-bound metrics, like memory
usage, and workload-bound metrics, like model accuracy.

3.2 Requirements
We distilled the lessons from the PoC into the following require-
ments for creating a technically usable and user-friendly solution.

(1) The tool should contain interfaces for commonly used op-
erating systems, virtual machine managers and container
runtimes

(2) The tool should implement an optimisation algorithm such
as linear programming, moving average, a search algorithm
or a machine learning algorithm to find the optimal hard-
ware

(3) The tool should contain interfaces that allow for other cus-
tom optimisation algorithms to be used

(4) The tool should compile a report summarising all the runs
and present the candidate hardware

(5) The tool should identify the candidate hardware, assuming
the max load equivalent to the tasks generated load

Figure 1: Storyboard, depicting the general workflow.

3.3 Tool Workflow
Given these requirements, a sizing tool would support the gen-
eral workflow depicted in Figure 1. The workflow assumes that a
manager has been installed on a single machine that acts as the
interface for the tool. Further assumptions are that connectors for
physical — bare metal — infrastructure, virtual machine managers
and container runtimes have been installed.

(1) The user submits aworkload for benchmarking. The submis-
sion consists of three parts: A configuration file containing
configurations for the specific benchmarking (C); The work-
load, which is the system that is going to be benchmarked
(W); and The task, that is, a system generating load that
the workload is benchmarked against (T).

(2) The tool reads the configuration file and retrieves informa-
tion about which connector will be used. This specifies if
the workload is to be benchmarked on either PH: Physical
infrastructure, meaning that the workload will be executed
on an operating system, installed directly on bare metal,
VM: Virtual Machine, meaning that the workload will be ex-
ecuted on operating systems utilising virtual resources, CO:
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Containers, meaning that the workload will be executed
using the host kernel.

(3) The tool searches the configuration file for information
about affinity to any hardware configurations. (a) If the
user has specified information about specific hardware con-
figurations to benchmark the workload on, nodes (𝑁1, 𝑁2,
. . . , 𝑁𝑛) that either directly match or are closest to the spec-
ified hardware, are selected. (b) If no affinity is provided,
the tool chooses a subset of nodes from the available nodes
to benchmark the workload.

(4) The tool determines the number of available nodes from the
set of chosen nodes and deploys the workload to the nodes.
Furthermore, a matching number of tasks are deployed on
isolated infrastructure to prevent cross-contamination.

(5) While the task is processing, and the workload is under
load, the tool monitors both resource- and workload-bound
resources.

(6) When the tool has executed the workload on the chosen
set of nodes, a report is returned to the user, summarising
the deployments on all nodes. The report contains A) A list
of all workload deployments and their associated metrics,
B) A graph depicting the metrics over execution time, and
C) A single candidate is chosen as the optimal hardware
configuration, assuming a maximum load equivalent to the
task-generated load.

4 RESEARCH CHALLENGES
Augmenting such sizing tool with further capabilities proposes
numerous vital challenges to consider and mitigate for the tool to
function as intended.

Firstly, there is a challenge in identifying relevant optimisation
algorithms that — based on the resource consumption of a given
hardware configuration — can determine which configuration is
most suited as a candidate. Here, conflicting attributes, such as
performance, energy efficiency and cost, must be included in the
optimisation.

Secondly, there is a challenge in bridging between hardware con-
figurations and understanding what effect different configurations
have on quality attributes. This bridging has to be semantically ex-
plainable to describe the relation between infrastructure and quality
attributes. Furthermore, semantics must be specified for defining
the relation between workloads, tasks, and associated workload-
bound metrics.

Thirdly, there is a challenge in monitoring, logging and reporting
the task-generated pressure on any given workload concerning a
specified quality attribute.

Lastly, there is a challenge in sectioning and distributing work-
loads, especially at granularity levels with components as large as
containers. Here, concerns arise about the ease with which a work-
load can be distributed while minimising developer disturbance.

5 CONCLUSION
In this article, we have argued that informed hardware decisions are
becoming increasingly important with the rapid increase in robotics
implementations, especially in manufacturing. By nature, robots
are equipped with lightweight, low-resource computers specifically

designed to run the core systems needed for the robot to function, as
well as small, static consumer scripts used to customise the robotic
behaviour to the given use case.

To enable further augmentation of robotics applications, appro-
priate hardware that is resourceful enough to execute the given
workloads while being cost-effective to deploy at a large scale is
needed.

This paper proposes the development of a tool for static work-
load benchmarking, which will help users make informed choices
about deploying a given workload on hardware configurations. The
tool utilises established optimisation algorithms combined with
a data-driven approach and load-based assessments to determine
candidates for optimal hardware configurations for deploying said
workload.
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