

Johannes Mey¹, Ariel Podlubne^{1,2}, René Schöne¹, Paul Gottschaldt^{1,2}, Diana Göhringer^{1,2}, Uwe Aßmann^{1,2}

¹Technische Universität Dresden ²Centre for Tactile Internet with Human-in-the-Loop (CeTI)

Systematic Testing of a ROS Interface Specification Backend

6th International Workshop on Robotics Software Engineering (RoSE'24) Lisbon, April 15th 2024

The System Under Test: FIRM [Pod+21]

"FIRM":

• FPGA (VHDL) ROS 1 and ROS 2 Middleware

Goal:

 Receive ROS messages on the hardware (PL) bypassing the CPU (PS)

[Pod+21] Ariel Podlubne et al. "Model-Based Approach for Automatic Generation of Hardware Architectures for Robotics". In: IEEE Access 9 (2021). ISSN: 2169-3536

The System Under Test: FIRM [Pod+21]

"FIRM":

 FPGA (VHDL) ROS 1 and ROS 2 Middleware

Goal:

 Receive ROS messages on the hardware (PL) bypassing the CPU (PS)

9 (2021). ISSN: 2169-3536

Creating a ROS Middleware for FPGAs

ROS Middleware

- Communication components in **library**
- Generated bindings for each ROS message type

ROS Message Types

- Custom format in ROS1
- Mapped to OMG IDL in ROS2

Challenges

- Support **all** ROS 1 and 2 versions
- Support multiple FPGA vendors/VHDL dialects
- ROS message **complexity**
- Testing on FPGA-hardware
- Distributed skills

Systematic Testing of a ROS Interface Specification Backend Johannes Mey, Ariel Podlubne, René Schöne, Paul Gottschaldt, Diana Göhringer, Uwe Aßman April 15th 2024

Systematic Testing of a ROS Interface Specification Backend Johannes Mey, Ariel Podlubne, René Schöne, Paul Gottschaldt, Diana Göhringer, Uwe Aßman April 15th 2024

Systematic Testing of a ROS Interface Specification Backend Johannes Mey, Ariel Podlubne, René Schöne, Paul Gottschaldt, Diana Göhringer, Uwe Aßmann April 15th 2024

Test Stages

Frontend Tests (TS1)

- ROS integration
- Parser

Code Generation tests (TS2)

Regression tests

Runtime tests (TS3)

- Generate messages
- Pipe through FPGA (sim)
- Compare input/output
- Only frontend shared with FIRM

Execution

- · Dockerized Gitlab CI Pipeline
- Automatic ROS1/2 switch based on ROS system variable \rightarrow add new ROS version = add new base image

Systematic Testing of a ROS Interface Specification Backend Johannes Mey, Arlel Podlubne, René Schöne, Paul Gottschaldt, Diana Göhringer, Uwe Aßmann April 15th 2024

Strategies / Insights / Lessons Learned

- Specification
- Test in Stages
- Use Analysis
- · Manage Test Effort
- Assess Coverage

ROS 1

- Informal specification
- Assumption: *"It's a ROS message if it works in Python and C++"*

ROS 1

- Informal specification
- Assumption: *"It's a ROS message if it works in Python and C++"*

ROS 2

- * DDS \rightarrow based on OMG IDL
- Message format itself still informal
- Transformation ROS to IDL informal

ROS 1

- Informal specification
- Assumption: *"It's a ROS message if it works in Python and C++"*

ROS 2

- * DDS \rightarrow based on OMG IDL
- Message format itself still informal
- Transformation ROS to IDL informal

\rightarrow Is testing all existing ROS messages enough?

ROS 1

- Informal specification
- Assumption: *"It's a ROS message if it works in Python and C++"*

ROS 2

- * DDS \rightarrow based on OMG IDL
- Message format itself still informal
- Transformation ROS to IDL informal

\rightarrow Is testing all existing ROS messages enough?

Not in paper: Combination of fuzzing and Controllable Combinatorial Coverage.

Structure of ROS Messages: Analysis and Metrics

Implementation using Reference Attribute Grammars [Hed00] with JastAdd [EH07]

 \rightarrow Analysis capabilities

Properties

- containsSubmessages
- containsUnconstrainedSubmessages
- containsUnconstrainedVariables
- containsStrings
- containsConstants
- isPartOfAction

Metrics

- nestingDepth
- numberOfDataFields
- distinctTypes
- distictPrimitiveTypes
- distinctMessageTypes
- ...

[Hed00] Görel Hedin. "Reference attributed grammars". In: Informatica (Slovenia) 24.3 (2000), pp. 301–317 [EH07] Torbjörn Ekman and Görel Hedin. "The JastAdd system – modular extensible compiler construction". en. In: Science of Computer Programming. Special issue on Experimental Software and Toolkits 69.1 (2007), pp. 14–26. ISSN: 0167-6423

٠

Distribution of ROS Messages in ROS1 Noetic

Systematic Testing of a ROS Interface Specification Backend Johannes Mey, Ariel Podlubne, René Schöne, Paul Gottschaldt, Diana Göhringer, Uwe Aßmanr April 15th 2024

Distribution of ROS Messages in ROS2 Humble

Systematic Testing of a ROS Interface Specification Backend Johannes Mey, Ariel Podlubne, René Schöne, Paul Gottschaldt, Diana Göhringer, Uwe Aßmann April 15th 2024

Test Runtime Analysis

Runtime of Tests

- Getting ROS message **expensive**
- Constant build time

Correlation to Properties

- ROS version (ROS2 Humble)
- Test phase (t_{gen})
- Property (Number of contained distinct message types)

Scatterplot: Metrics x Time in Phase

Systematic Testing of a ROS Interface Specification Backend Johannes Mey, Ariel Podlubne, René Schöne, Paul Gottschaldt, Diana Göhringer, Uwe Aßmann April 15th 2024

lide 13 of 16

Scatterplot: Standard Packages vs All Packages

Systematic Testing of a ROS Interface Specification Backend Johannes Mey, Ariel Podlubne, René Schöne, Paul Gottschaldt, Diana Göhringer, Uwe Aßmann Aoril 15th 2024

Slide 14 of 16

Coverage

Problem: Coverage of elements in templates

1. Assign a number to each text fragment and create a lookup table

#	Template File	Pos.	Stack	Content
0	template1.mustache	(1, 1)		
1	template1.mustache	(1,13)	#msg	"\n"
2	template1.mustache	(2,12)	#msg>#fields	"\n"
3	template1.mustache	(3,12)	#msg>#fields>#simple	"\n"
4	template1.mustache	(4,10)	#msg>#fields>#simple>#axis	"\n{{name}}_tready_in when s_counter"
5	template1.mustache	(5,53)	#msg>#fields>#simple>#axis>#currentMsg	"_{{currentMessage}}"
6	template1.mustache	(5,91)	#msg>#fields>#simple>#axis	"={{index_tdata}} else\n"
7	template1.mustache	(6,10)	#msg>#fields>#simple	"\n"

2. Create copy of templates replacing all fragments with just the number

 $\label{eq:label} \end{tabular} \label{label} \end{tabular} \end{tabula$

- 3. Run the test suite, obtaining number sequences
- 4. Aggregate all numbers, thus finding missing fragment indices
- 5. Identify dead code using the lookup table

Conclusion

Summary

- o ~30k tests
- + High confidence in FIRM quality
- + Test systems allow expert collaboration
- + Data about ROS message landscape
- Blocking factor specification
- No good minimal test set yet

Opportunities and Next Steps

- Apply fuzzing and Controllable Combinatorial Coverage to generate test set
- * ROS Message \rightarrow OMG IDL
- Applicable to any middleware backend

