2025 IEEE/ACM 7th International Workshop on Robotics Software Engineering (RoSE) | 979-8-3315-3795-1/25/$31.00 ©2025 IEEE | DOI: 10.1109/ROSE66716.2025.00008

2025 IEEE/ACM 7th International Workshop on Robotics Software Engineering (RoSE)

Model-Based Systems Engineering Toolchains for
Software Development of Robotic Autonomous
Systems

Andrew Pfeil
Ground Vehicle Robotics
U.S. Army DEVCOM GVSC
Warren, MI

Calvin Cheung
Ground Vehicle Robotics
U.S. Army DEVCOM GVSC
Warren, MI
ORCID: 0000-0003-3876-1684

Abstract—Robotic autonomous system development requires a
system-of-systems approach to manage the complexity inherent in
integrating disparate fields of engineering into a single system.
While model-based systems engineering (MBSE) provides the
tools and processes needed in the management of complex robotics
system development, there has traditionally been challenges in
leveraging MBSE in rapidly changing software-intensive domains
such as autonomy. To bridge the gap between MBSE and software
engineering, we developed model import toolchains. The goal of
these toolchains is to automate the generation of SysML models to
reduce the burden of manual modeling for robotic software
engineers. These toolchains are tailored for the Robot Operating
System and leverage model import files that are maintained by the
software developer, ensuring alignment between the models and
the codebase. By leveraging the model import toolchain, we have
been able to successfully integrate an MBSE approach with our
software engineering processes, improving efficiency in the
development process and the quality of robotic systems.

Keywords—SysML, model-based systems engineering, MBSE,
ROS

I. INTRODUCTION

The field of robotics is interdisciplinary in nature.
Specialized knowledge in various domains such as dynamics,
control theory, machine vision, algorithms, artificial
intelligence, and software engineering are combined to create
systems that integrate together towards the common goal of a
mobile autonomous system [1]. Given this system-of-systems
aspect of robotic autonomous systems (RAS), having a reliable
systems engineering approach is vital to the overall success of
RAS development. Systems engineering is defined as a
“transdisciplinary and integrative approach to enable the
successful realization, use, and retirement of engineered
systems...” [2]. A thorough systems engineering approach
allows for the integration of the various enabling systems that
comprise RAS in a methodical way that manages complexity,
uncertainty, and change. With software being a core component
of autonomy development, it is vital that a systems engineering
approach being utilized in RAS development is optimized to
allow for inclusion of robotic software development concepts
into its processes. Our work focuses on improving the processes
used in integrating robotic software engineering and model-
based systems engineering (MBSE) via the development of a
systems modeling language (SysML) import toolchain. Multiple
industry surveys have shown that it is difficult to get software
engineers access to the proper support and tooling for MBSE

979-8-3315-3795-1/25/$31.00 ©2025 IEEE
DOI 10.1109/RoSE66716.2025.00008

21

Mark Petrotta Catherine Haggerty
System Strategy, Inc. (SSI) System Strategy, Inc. (SSI)
Troy, MI Troy, MI

ORCID: 0009-0006-5560-329X ~ ORCID: 0009-0004-1285-1504

[3]. By automating the generation of SysML model elements,
we can streamline and simplify integration of software and
systems engineering, reducing the friction experienced by
software engineers when working within a systems engineering
framework and ensuring synchronicity between the software
and the overall system models.

II. MODEL-BASED SYSTEMS ENGINEERING

MBSE is a technical approach to systems engineering,
defined as “the formalized application of modeling to support
system requirements, design, analysis, and verification and
validation activities beginning in the conceptual design phase
and continuing throughout development and later lifecycle
phases [4].” The benefits provided by utilizing MBSE are
numerous, including improved system performance, greater
consistency, design reuse, and a reduction of defects [4]. A
plethora of industries have adopted MBSE in an effort to take
advantage of these benefits, including healthcare, automotive,
aerospace, logistics, and defense [5].

The most commonly used model language for MBSE is
SysML [6]. SysML is a graphical modeling language that
supports the specification of the structure, behavior,
requirements, and parametrics of a system. There are a variety
of diagram types defined by SysML, each of which conveys
information about different aspects of a system. Model
elements across each diagram type can be linked together to
describe the interrelations amongst the different parts of a
system.

Despite the utility of SysML and MBSE in the development
of robust systems, major challenges in integrating MBSE with
software engineering methodologies exists. Software engineers
across various industries have had difficulties in getting MBSE
tooling and support [3]. These difficulties, in addition to
cultural resistance among the software engineering discipline,
have reduced the overall effectiveness of MBSE in the software
domain. To address the challenges inherent to integrating
MBSE and software engineering, we developed SysML model
import toolchains to automate SysML model development and
integrate the resultant models into our software engineering
processes.

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on January 14,2026 at 07:00:59 UTC from IEEE Xplore. Restrictions apply.

TABLE I. ROS CONSTRUCTS

ROS Construct Definition
Process that performs computation, synonymous
Nodes e \
with “software module”.
Messages Strictly type_d data structures used by nodes to pass
data, stored in a .msg file.
. Named buses with a publish/subscribe message
Topics
pattern that nodes send messages on.
Unit of organization in that provides all the files
Packages needed for some functionality for a logically
standalone purpose, defined in a package.xml file.
Services Reply/r@quest process for synchronous
transactions.

III.

The typical procedure for developing SysML models of
RAS without toolchain assistance is a manual approach.
Software developers would dedicate collaboration time with
system modelers to explain the RAS in detail. With the
knowledge in hand, the system modeler would then manually
create the blocks and connections in a SysML modeling tool
such as MagicDraw [7] or Papyrus [8]. Alternately, a software
developer could be trained up in SysML tools to perform both
development and the manual modeling processes. Both options
add significant schedule and effort for software developers. We
sought to reduce the burden placed upon software engineers by
developing toolchains that automate the generation of SysML
models. Rather than have to learn SysML tools or increase
collaboration overhead, software developers are able to keep
SysML models of the RAS up to date by maintaining model
files that are structured, text-based, and machine-readable.

MODEL IMPORT TOOLCHAIN

The foundation of the toolchains is based on the Robot
Operating System (ROS). ROS is a framework for the
development of robotic software, leveraging a collection of
libraries, tools, and conventions to enable collaborative
software development and reuse [9]. The toolchain relies on
various ROS constructs, as described in Table I. In combination
with the ROS constructs, the model import toolchain uses
Extensible Markup Language (XML) model import files
created for the SysML import of ROS systems. The XML
format was chosen due to developer familiarity with it and the
ease at which developers could work with the file type. The
plain-text, structured nature of XML files makes it simple for
developers to create and modify them as needed in their
preferred development environment. XML schemas for the
model import files were defined to validate that the structure of
each file is correctly formatted for the toolchain. Model import
files come in two varieties: component import files and
instantiation import files. The component import files contain
information about ROS constructs in a package, such as nodes,
messages, and topics. The instantiation import files define the
structure of a ROS system as collection of individual
components. They define the connections between the

22

components, which are used to generated interconnected
SysML diagrams.

The toolchain was developed as a plugin for MagicDraw.
MagicDraw was chosen due to its in-depth documentation for
plugin support [10]. Using the ROS constructs and model
import files provided by software developers as inputs, a
systems engineer can run the model import toolchain to
generate SysML models. The overall model import toolchain
process is performed in two phases as follows:

1. Definition Phase: Import ROS
components into SysML model elements

constructs and

a. Recursively scan a directory for ROS components. Any
folder that contains a package.xml is considered a ROS
package.

b. Generate SysML elements for each package:

i. For each .msg file found, create a SysML signal
with the attributes defined in the ROS message
Create SysML signals for each request and response
for each ROS service

il.
iii. For every ROS node in the package, generate a
SysML block based on the component import file,
with topics represented as SysML ports associated
with the corresponding ROS message SysML signal

2. Usage Phase: Generate architecture diagrams
representing the structure of the ROS system with the imported
components

a. Examine the instantiation import file for subsystem
groupings of components generated in the “Definition
Phase”

. Generate SysML blocks of the subsystems groupings,
with the associated SysML block components being
linked to the subsystem

c. Generate a SysML internal block diagram of the
subsystem and component SysML blocks with the
proper connections between ports that have matching
topics names and ROS message types

The end results of the toolchain are model elements and
system architecture diagrams that are up to date based on input
from developers and usable in MBSE and software engineering
processes. Fig. 1 shows the results of a model import when
applied to a simple publish/subscribe ROS system from the
publicly available ROS tutorials [11]. We created component
import files for the two ROS packages, minimal publisher and
minimal subscriber, which specified the topics and messages
used in each package. Fig. 2a shows the example
minimal_publisher component import file. In addition, an
instantiation import file, as shown in Fig. 2b, was created to
describe how these two packages form an interconnected
system. Fig. la shows import results from the “Definition

Phase” while Fig. 1b shows the interconnected SysML internal

block diagram generated in the “Usage Phase”. Applying these

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on January 14,2026 at 07:00:59 UTC from IEEE Xplore. Restrictions apply.

a. b.

&3 Component
B-03 default
-0

ibd [Block] Inerconnected System| g inerconnected System jJ

-3 examples_rclcpp_minimal_publisher
&0 msg
string
5-03 node
B-[3 examples_rclcpp_minimal_publisher
80 topics
E examples_rclcpp_minimal_publisher
B £] examples._rclcpp_minimal_subscriber
£-03 node
B[examples_rclcpp_minimal_subscriber
E examples_rclcpp_minimal_subscriber

5 3 L o
+ examples_rclepp_minimal_publisher [ope.ou-lapie

topic_in : topic i
PN 09C = examples_clcpp_minimal_subscriber

Fig. 1. Model import toolchain output for (a) the Definition Phase (b) the
Usage Phase.

toolchains to our ROS development efforts enabled us to apply
MBSE to our software engineering efforts in several different
ways, as described in the next section, increasing efficiency of
processes and consistency of the system.

IVv.

The model elements and diagrams generated by our model
import toolchains have enabled integration between MBSE and
software engineering processes in a synchronized fashion,
ensuring consistency between the two domains. Utilizing the
toolchain, we have seen some key improvements in our overall
systems and software engineering efforts in RAS development.
Three particular areas of benefit in MBSE integration that we
have experienced are architecture reviews, requirements tracing,
and documentation.

TOOLCHAIN APPLICATION

A. Architecture Reviews

All new development or updates of autonomous capabilities
in RAS must align with the architecture of the system. The
capabilities need to either fit into the existing architecture, or the
architecture needs to be modified to allow for the integration of
the capabilities. Accordingly, a vital part of software
engineering efforts are architecture reviews, in which the
interfaces required of a capability and the interfaces of a RAS
architecture are examined to ensure proper alignment. In order
to perform these reviews, accurate diagrams of both the overall
RAS architecture and the new components are required to
compare interfaces towards integration. In the past, these
diagrams were hand-generated, using simple diagraming
software such as Microsoft Visio or Draw.io. Because the
diagrams were manually generated, they would quickly become
out of date with the state of the software, forcing laborious
reworks and comparisons. With the advent of our model import
toolchain, we are able to generate updated architecture diagrams
of both the new capabilities and the RAS architecture, avoiding
the manual labor of diagram creation. In addition, using SysML
allows us to automate the comparison of interfaces by leveraging
its capabilities to compare connections and datatypes between
interfaces of different SysML blocks. For example, we can use
the models to ensure that the topics required by a new path
planning node have data types that match the data types
provided by pre-existing architecture. All of this results in
greater consistency in the RAS architecture and a more robust
process that is less prone to human error.

B. Requirements Tracing

One of the primary diagram types is SysML is the
requirement diagram. A requirement diagram is a structural

23

Fig. 2. Sample model import files for (a) the minimal publisher component
import file and (b) the instantiation import file.

diagram that shows relationships amongst SysML requirement
model elements, such as derive, satisfy, and verify [6]. One of
the benefits of detailing requirements using MBSE is
traceability. Utilizing the model import toolchain generates
model element representations of RAS capabilities that
requirements of all levels can trace to, specifying how various
requirements are satisfied. This linkage between requirements
and capabilities allows for greater system consistency and
reduction in errors. Changes to capabilities can immediately flag
the affected requirements and vice versa, allowing for rapid
response in ensuring that overall system needs are met. In our
utilization of the toolchain, we have been able to identify
mismatches between documented requirements and capability
development, allowing us to immediately identify errors and
reprioritize effort accordingly.

C. Documentation Generation

While the goal of the model import toolchain has been to
improve MBSE utilization in RAS development, there may still
be situations where more traditional forms of documentation are
preferred. MBSE offers thorough and interactive information
about a system, but can be complicated to navigate, and require
tools that not everyone has access to. In order to better serve a
wider range of documentation needs, we leveraged the
information gathered from the model import toolchain to
generate documentation of the system. These documents can be
of various formats, such as PDF or HTML, and include
information about the various subsystems, nodes, topics, and
messages. In addition, diagrams such as architecture images can
be embedded into the documentation, allowing for greater
clarity and parity with the current state of the architecture.

V.

Throughout the course of integrating MBSE toolchains with
our software engineering processes, three notable observations
were made about critical design choices that affected overall
development. These observations shaped our understanding of
key factors important to the application of MBSE in RAS
software development, and should be considered by others
looking to leverage MBSE in the software domain.

LESSONS LEARNED

The first observation related to down selecting between
competing technologies. During the development of the
toolchain, we considered two potential file formats for the model
import files: XML and JavaScript Object Notation (JSON). In
comparing the two, we found many difference that made JSON
seem like the more attractive option, such as more compact

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on January 14,2026 at 07:00:59 UTC from IEEE Xplore. Restrictions apply.

syntax, easier parsing, and greater flexibility [12]. Despite those
benefits however, XML was decided upon due to the prevalence
of the XML file format in both ROS and Doxygen, a code
documentation generator [13] utilized by our software
engineers. The primary takeaway from this analysis was that
comparisons on the benefits of different technologies cannot be
in a bubble. The entire development environment and ecosystem
must be taken into consideration for design choices related to
selection of competing technologies.

Another key observation was the need to meet the
developers within their comfort zones when making big
changes. The inclusion of MBSE into the workflows of
developers accustomed to doing document-based design and
tracking can be challenging on a cultural level. From the
perspective of a software developer, they may see their current
practices as sufficient, and any additional effort adds no value to
their workflow. To combat issues related to these viewpoints, it
is important to implement incremental change so that developers
can execute within their existing workflows. A prime example
of this is the utilization of Doxygen. Requesting that developers
create model import files was initially met with friction, but
when the developers were informed that they could leverage
their current tools such as Doxygen to generate the files by
embedding the model import file information into the comments
and modifying the output format to be XML, there was greater
acceptance of the changes needed. Incremental adaptation of
new MBSE workflows that meet developers within their
comfort zone yielded greater acceptance and better results.

The final observation we made relates to the value of
standardization. In SysML, there is a construct called a profile.
At the most basic level, a SysML profile extends the existing
modeling language with special rules and constraints to make it
better suited for a particular domain [6]. For our use case, we
needed a ROS profile to use in our toolchain to generate SysML
diagrams. At the time of development, there was no standardized
ROS profile in use by the community. As a result, we developed
a ROS profile for our toolchain that defines common ROS
constructs in SysML. We emphasized commonality in the
development of our profile, prioritizing the most widely utilized
ROS elements that every user would need in RAS development.
Creating a standardized ROS profile driven by community
promotes the utilization of MBSE in ROS development.

VL CONCLUSION

In an effort to integrate the disciplines of MBSE and RAS,
we developed SysML model import toolchains that automated
the generation of SysML model elements based on ROS
constructs and model import files. By integrating these SysML
models with our software engineering practices, we were able
to improve the quality and efficiency in various software
engineering processes such as architecture reviews,
requirements tracing, and documentation generation. MBSE is
a powerful systems engineering approach that facilitates better
system performance, higher levels of consistency, reduction of
defects, and design reuse. Through combining MBSE and
software engineering, the field of robotic software development
can take advantage of these benefits and improve significantly.

24

By developing model import toolchains, we sought to
demonstrate the utility of MBSE in RAS development to
provide a starting point for the greater robotics community to
follow suit in their own efforts.

REFERENCES

[1] R. Siegwart, I. R. Nourbakhsh and D. Scaramuzza,
Introduction to Autonomous Mobile Robots (2nd. ed.),
The MIT Press, 2011.

H. Sillitto et al., "Systems Engineering and System
Definitions," INCOSE Publications Office, San Diego,
CA, 2019.

C. Cheung et al., "Synchronizing MBSE models and
software development in robotic autonomous systems," in
Ground Vehicle Systems Engineering and Technology
Symposium, Novi, M1, 2024.

E. R. Carroll and R. J. Malins, "Systematic Literature
Review: How is Model-Based Systems Engineering
Justified?," Sandia National Laboratories, Albuquerque,
NM, 2016.

International Council on Systems Engineering, "Systems
Engineering Vision 2035: Engineering Solutions for a
Better World," 2022.

L. Delligatti, SysML Distilled: A Brief Guide to the
Systems Modeling Language, Upper Saddle River, NJ:
Addison-Wesley, 2014.

Dassault Systémes, "Unified Modeling Language with
No Magic MagicDraw," Dassault Systémes, [Online].
Available: https://www.3ds.com/products/catia/no-
magic/magicdraw. [Accessed 24 Jan 2025].

(2]

(3]

(4]

(3]

(6]

(7]

[8] The Eclipse Foundation, "Papyrus," The Eclipse
Foundation, [Online]. Available:

https://eclipse.dev/papyrus/. [Accessed 24 Jan 2025].

M. Quigley et al., "ROS: an open-source Robot Operating
System," in ICRA Workshop on Open Source, Kobe,
Japan, 2009.

[10] Dassault Systémes, "Plugins - MagicDraw 2024x,"
Dassault Systémes, [Online]. Available:
https://docs.nomagic.com/display/MD2024x/Plugins.
[Accessed 25 Jan 2025].

[11] M. A. Gutierrez, "examples/rclcpp/topics at jazzy -
ros2/examples," 27 June 2024. [Online]. Available:
https://github.com/ros2/examples/tree/jazzy/rclepp/topics.
[Accessed 30 Oct 2024].

[12] Amazon Web Services, Inc., "JSON vs XML - Difference
Between Data Representations," Amazon Web Services,
Inc., 2024. [Online]. Available:
https://aws.amazon.com/compare/the-difference-
between-json-xml/. [Accessed 31 Oct 2024].

[13] D. van Heesch, "Doxygen homepage," 7 8 2024.
[Online]. Available: https://www.doxygen.nl/. [Accessed
31 Oct 2024].

(9]

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on January 14,2026 at 07:00:59 UTC from IEEE Xplore. Restrictions apply.

