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Abstract—Traditional frontend systems were initially conceived
as thin presentation layers within larger monolithic applica-
tions. However, as user interaction requirements became more
sophisticated, modern frontends started to integrate complex
logic and domain-specific business rules. This shift is particularly
evident in highly interactive and dynamic applications, such as
robotic systems, where frontends must manage more than just
user’s input and output. The resulting large codebases have
become increasingly challenging to maintain, driving the need
for more robust architectural solutions. This work presents a
novel software architectural approach for developing frontends in
robotic systems using micro frontends. The proposed solution was
designed through a systematic approach that combines Object-
Oriented Modeling and Domain-Driven Design to address key
challenges in this domain, leading to a discussion of major
decisions regarding the system design. The architecture was
evaluated based on the ISO/IEC 25010 quality model, achieving
significant improvements over monolithic systems in performance
tests, with higher frame rates and lower latency, as well as
enhanced maintainability and reliability.

Index Terms—micro frontends, web development, software
architecture, graphical user interfaces, robotic systems

I. INTRODUCTION

Traditionally, frontend applications primarily served as sim-
ple data presentation layers with minimal business logic,
leaving most system complexity to be managed by the back-
end [1]. However, in recent years, the complexity of modern
applications has grown at an extraordinary pace, especially in
domains that demand sophisticated frontends integrated with
complex backend systems. In this scenario, robotic systems
represent one such domain where frontends are expected to do
far more than present static data; they must support dynamic
tasks such as 3D real-time visualization, physics simulations,
and interactive replays of robotic actions.

As robotic systems evolve, traditional monolithic ap-
proaches to Graphical User Interfaces (GUIs) development
reveal their limitations [2], resulting in large codebases that
are difficult to maintain and slower development cycles. To
mitigate these issues, micro frontends (MFEs) have emerged as
an alternative solution to the challenges imposed by monolithic
architectures by extending the principles of microservices –
widely used in backend development – to the frontend [3],
allowing a large application to be divided into smaller, inde-
pendently developed, and deployable modules. This approach
promotes modularity by design and enables teams to work
autonomously, adopting different technologies and workflows

for different parts of the frontend while ensuring that the
overall application remains cohesive.

To support the design of modular and scalable software
architectures, such as microservices, Object-Oriented Model-
ing (OOM) and Domain-Driven Design (DDD) are key tools
used during the process [4]. OOM represents software systems
as collections of discrete objects that encapsulate both data
structures and behaviors [5], often using Unified Modeling
Language (UML) as a standardized notation. DDD, on the
other hand, focuses on modeling systems through a deep
understanding of the core domain, promoting collaboration
between developers and domain experts. Together, these ap-
proaches complement each other, supporting architectures that
are both technically robust and domain-aligned.

Therefore, this work proposes a systematic approach for
developing a micro frontend architecture focused on robotic
systems, grounded in a hybrid approach that applies DDD and
OOM principles. While this framework is primarily designed
for robotics, its versatility extends to any complex system with
evolving requirements and sophisticated user interaction needs.
Nevertheless, the focus of this research is on robotic systems,
with an emphasis on GUIs used in robotic applications,
where interactive simulations and real-time data processing
are critical.

The remaining sections are structured as follows: Section II
reviews related work on frontend architecture and robotic
systems. Section III presents the solution design, exploring the
architectural decisions. Section IV describes the implemen-
tation of the robotic system GUI using the proposed micro
frontend architecture in the RoboCup Small Size League.
Section V evaluates the solution through experiments, results,
and comparisons of architectural approaches. Finally, Sec-
tion VI concludes with future research directions and potential
applications beyond robotics.

II. BACKGROUND AND RELATED WORK

Robotic systems are rapidly expanding across multiple envi-
ronments [6], driving the development of increasingly complex
systems and creating a growing demand for flexible, scalable
software architectures, which leads to significant innovation
in this area. For instance, Georgiades et al. [7] propose a
microservice framework for multi-drone autonomous systems,
emphasizing fault tolerance and expandability. Furthermore,
Zhou et al. [8] demonstrate how a virtual microservices model
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simplifies task composition and control in robotic swarms by
abstracting individual actions into high-level virtual services,
as seen in a rescue mission scenario. However, while these
studies explore novelties in robotic systems, they largely
overlook frontend and user interface aspects.

This gap highlights an opportunity to explore new archi-
tectures in robotics GUIs. Early GUIs enabled basic robot
control through visual feedback, utilizing maps, sensor dis-
plays, and simple inputs like buttons and sliders. Rajapaksha
et al. [9] advanced these interfaces in Robot Operating System
(ROS) environments, making robot control more accessible by
bridging complex algorithms and user interaction. The rise of
browser-based GUIs further transformed robotic interfaces, en-
abling control from any device via web browsers and platform-
independent technologies like HTML5 and JavaScript. Di
Nuovo et al. [10] highlighted the accessibility of these GUIs
in elder care. In complex tasks like urban search and rescue
(USAR), Niroui et al. [11] demonstrated multi-robot control
through browser-based interfaces, enhancing situational aware-
ness with real-time video and data. However, these studies
lack an in-depth architectural analysis to compare monolithic
and distributed approaches, leaving the trade-offs in flexibility,
scalability, and maintainability underexplored.

Furthermore, while micro frontends have gained attention
in software engineering, research focused on their application
in distributed frontend systems, particularly within robotic
systems, remains limited. The novelty of this architecture has
resulted in a scarcity of dedicated literature; however, research
from related fields provides relevant examples and potential
solutions for modularity and scalability issues. Mena et al.
[12] present a component-based Progressive Web Application
(PWA) for geospatial IoT data acquisition, highlighting the
benefits of MFEs for dynamic user interface construction
and independent development of visual components. Similarly,
Shakil et al. [13] propose a modular architecture for industrial
HMI using MFEs, demonstrating how engineers can build
Human-Machine Interfaces from independent MFEs, with
each component encapsulating the entire development lifecy-
cle—from user interface design to data acquisition. Schäffer
et al. [14] investigate microservices and MFEs in a web-
based configurator for robotic automation tools, showcasing
how these architectural approaches simplify development and
deployment through a divide-and-conquer approach. These
works provide real-world applications of micro frontend archi-
tectures in robotic contexts, showing that, despite its novelty,
this architectural approach can be successfully implemented
in complex environments. However, they lack a rigorous
architectural modeling approach, and the absence of evalu-
ation methodologies for the proposed architectures limits their
practical applicability and assessment.

III. SOLUTION DESIGN

This section introduces a systematic framework for design-
ing a micro frontend architecture for the graphical user in-
terfaces of robotic systems. The proposed approach combines
use case modeling and domain analysis to translate abstract

system requirements into a maintainable and scalable archi-
tecture aligned with domain logic, grounded in the principles
of Object-Oriented Modeling and Domain-Driven Design. A
diagram illustrating the proposed software lifecycle model
is presented in Figure 1, with each phase described in the
following subsections.

Fig. 1. Proposed software lifecycle model

A. Requirement Analysis

In the requirements analysis phase, stakeholders – including
developers, engineers, and end users – are consulted to gather
requirements, constraints, and pain points through discovery
sessions. The collected information is filtered and refined into
a requirements document, which guides all subsequent analysis
and design phases.

Requirements are then categorized into functional require-
ments, non-functional requirements, and design and imple-
mentation constraints.

1) Functional Requirements: Functional requirements de-
fine the functionalities a system must provide and its expected
behavior in response to particular inputs or scenarios [15]. Al-
though these requirements are typically defined at a high level
and refined throughout development, this approach captures
them directly as use cases.

To represent the interactions between the system and ex-
ternal entities in each use case, a UML use case diagram is
utilized. While experienced domain experts may sometimes
bypass this step by identifying system subdomain bound-
aries directly, this artifact is necessary for subsequent project
phases.

2) Non-Functional Requirements: Non-functional require-
ments, or quality attributes [16], place constraints on how the
system should perform its functionalities [15]. Quality models
provide a structured approach for selecting and evaluating
these requirements. Considering this study’s focus on the
impact of adopting a distributed micro-frontends architecture
compared to a traditional monolithic approach, the analysis
emphasizes a specific subset of quality attributes from the
ISO/IEC 25010:2011 product quality model [17] that are
directly influenced by this architectural shift: performance
efficiency, maintainability, and reliability.
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3) Design Constraints: Design constraints limit developers’
choices for valid reasons [18]. When designing large modular
systems, low coupling and high cohesion are basic design
principles that promote scalability, maintainability, and archi-
tectural integrity [19]. Additionally, to support the applicability
of the architecture across diverse robotic systems, the proposed
design constraints are as follows:

• Distributed: The system must be composed of fully inde-
pendent applications, enabling them to evolve separately
and reducing dependencies across the system.

• Future-ready: The architecture of the system must sup-
port future changes and new technologies with minimal
rework.

• Backend independent: The backend of the system must
be decoupled from the frontend, allowing independent
updates without affecting the user interface.

4) Implementation Constraints: Implementation constraints
address practical considerations in system construction, influ-
enced by the team’s expertise and the selected technology
stack. These constraints guide coding and deployment prac-
tices to ensure the system remains consistent, maintainable,
and adaptable. Based on the micro frontend principles [2], the
proposed implementation constraints are:

• Minimal dependency on external libraries: The system
must favor native technologies to minimize risks and
ensure long-term stability.

• Technology agnosticism: The system must support var-
ious frameworks, languages, and technologies.

• Web browser compatibility: The system must be ca-
pable of running in a web browser, ensuring broad
accessibility and ease of deployment.

B. System Analysis

In software engineering, models simplify complex problems
and provide a clearer understanding of them. These models
are particularly powerful in the context of OOM and DDD,
where they closely reflect the real-world domain (the robotic
environment).

During the system analysis phase, models are created to
guide the following design phase. These artifacts capture both
functional and non-functional requirements, including domain
models and bounded contexts that define how each part of the
system will be implemented.

1) Domain Analysis: The process of domain analysis in-
volves gathering information from various sources, including
domain experts, relevant literature, existing software, and
documentation. A common technique in this phase is filtering
nouns from requirements and use cases to identify potential
entities, excluding irrelevant elements – which are handled
later in the design phase.

Exploratory domain models, expressed as abstract UML
class diagrams, are constructed based on the identified entities.
These diagrams capture the entities and relationships within
the domain, but are not intended to model implementation
details. Operations, polymorphism, and certain modeling prin-
ciples are typically not the focus at this stage [20].

As the domain model evolves, subdomains and their in-
terrelationships emerge, bridging the gap between business
understanding and technical implementation. A key aspect
is the development of a Ubiquitous Language – a shared
vocabulary derived from domain experts’ jargon – refined
for clarity to ensure alignment among all stakeholders, from
developers to domain experts, have aligned discussions that
translate into code [19].

2) Bounded Contexts: A bounded context in DDD defines
the scope where a particular model is applicable. Within
this context, the model remains coherent and focused on its
domain, without considering relevance outside its boundaries.
Different contexts may adopt distinct models, terminology,
and rules, each reflecting their own version of the Ubiquitous
Language [19].

Identifying bounded contexts involves functional decompo-
sition, by grouping use cases with similar goals and domain
concepts. This process reveals natural boundaries within the
system, organizing related functionalities into distinct contexts
where a consistent domain model can be applied.

Once the bounded contexts are identified, the next step is to
distribute the entities from the exploratory domain model to
the appropriate contexts. Each context should encapsulate the
entities that best represent its core concepts, aligning with its
specific requirements and preserving well-defined boundaries
to minimize overlap.

As each context is refined, new entities may emerge, and
existing ones may be renamed or redefined. In some cases,
entities may only represent a partial view of the whole. The
result is not a single model but a collection of models, each
with its own Ubiquitous Language, with translation maps
allowing communication between them.

It is important to remain flexible during the design and
implementation process. As the system evolves, some contexts
may overlap significantly and should be merged, while others
may emerge as the domain becomes clearer. If a context be-
comes overly complex, it may need to be divided into smaller,
more manageable parts. These adjustments are an inherent and
necessary part of refining the system’s architecture.

C. System Design

In the system design phase, concrete models are developed
to define the micro frontend architecture, building on the
knowledge from the analysis phase. Unlike analysis models,
which capture domain concepts, design models translate these
concepts into architectural solutions. These models include
detailed representations, such as component diagrams, in-
teraction diagrams, and design patterns that delineate the
implementation of each system component.

1) Micro Frontends Definition: The definition and imple-
mentation of micro frontends is influenced by several fac-
tors, including the size of the development team and their
familiarity with this architectural paradigm. Even small teams
can benefit from a distributed frontend architecture, improving
scalability, resilience, and maintainability, especially in com-
plex domains like robotics graphical user interfaces.
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A good starting point for defining MFEs is to align each one
with a bounded context. By mapping MFEs to these contexts,
the architecture stays cohesive, with each frontend segment
reflecting the natural division of the domain. As the system
evolves, this initial alignment of MFEs to bounded contexts
should be iteratively refined. Some MFEs may need to be split
into smaller components, while others could be consolidated
to reduce complexity or improve performance.

To support the micro frontend architecture, several architec-
tural design patterns are adopted. These patterns, as described
by the Gang of Four [21], offer reusable solutions to common
design challenges. While patterns like Observer are essential
for reactivity within individual micro frontends, three archi-
tecturally significant patterns are focused on: Domain Events,
Backends for Frontends (BFFs), and the Application Shell.

• Domain Events: A DDD pattern [22] that enables au-
tonomous services to operate independently by using
asynchronous messaging instead of direct calls. Origi-
nating from domain entities, these events align with the
Ubiquitous Language and are mapped to new structures
when crossing boundaries to maintain their meaning.
This pattern is well-suited for web frontend architectures,
which are inherently event-driven and reactive, and is
used to model significant communications within and
across micro frontends.

• Backends for Frontends: A consumer-focused API de-
sign pattern where each BFF acts as an intermediary,
providing data in the format required by its specific client.
This allows core backend services to remain generic and
reusable while improving frontend-backend interaction.
BFFs can also map backend domains to frontend do-
mains, maintaining architectural boundaries and promot-
ing flexibility [3]. Essentially, BFFs serve as specialized
backends for user experiences, protecting frontends from
backend complexities and exposing only the necessary
data and services, acting as the anti-corruption layer in
DDD [19].

• Application Shell: An orchestrator for micro frontends
that is loaded first and remains active throughout the
user’s session [3]. It dynamically loads and unloads micro
frontends based on navigation, optimizing performance
by retrieving only relevant components. As a media-
tor [21], the Application Shell coordinates communica-
tion between micro frontends, ensuring their decoupling
and enabling them to focus on their respective tasks.

2) Service Interaction Model: Interaction diagrams are im-
portant tools for modeling the dynamic behavior of software
systems, visually representing the steps involved in executing
a use case or any specific functionality. Collectively, these
steps form what is known as an interaction [20]. One notable
type of interaction diagram, the Service Interaction Model, is
particularly useful for illustrating the communication between
the micro frontends and the other services. These diagrams
help refine the system’s architecture by making the flow of
interactions explicit and identifying potential inefficiencies.

Figure 2 demonstrates a Service Interaction Model.

Fig. 2. Service interaction model

3) Service Component Model: As the system architecture
is refined, high-level design decisions must be translated into
a detailed component diagram. This process involves making
architectural choices that will shape the system’s structure and
behavior. The component diagram provides a representation
of the system’s major building blocks and their connections,
serving as a blueprint for both developers and stakeholders.

Figure 3 presents a component diagram, which includes
the Application Shell, micro frontends, and their respective
BFFs. The backend services are represented as a generic layer,
illustrating that they can be architected in a variety of forms,
whether monolithic or distributed.

Fig. 3. Service component model

D. Implementation
This phase bridges the gap between high-level architectural

concepts and actual implementation, translating the design
into actual code. Even with a defined architecture, imple-
menting each micro frontend requires careful decisions about
communication, coordination, and composition. These choices
establish how components interact, exchange data, and con-
tribute to a cohesive user experience. The goal is to balance
the autonomy of individual MFEs with the need to deliver a
unified experience across the system’s functionalities.

Key considerations include selecting client-side or server-
side composition, choosing an orchestrator, and defining inter-
component communication methods. These decisions directly
influence performance, scalability, and responsiveness, deter-
mining where and how views are constructed and managed.
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The orchestrator controls routing and component interactions,
coordinating the MFEs into a seamless experience. Each
choice supports a system that effectively blends flexibility with
consistency, resulting in a robust, cohesive implementation.

E. Testing

Testing is essential for ensuring software quality, as it
evaluates both fundamental units – such as classes, functions,
and components – and their integrations. The micro frontend
architecture enhances this testing process by enabling a more
granular and manageable approach due to its decoupled nature
and adherence to object-oriented principles.

Continuous integration (CI) and continuous delivery (CD)
are essential to streamline testing, supporting rapid and reliable
code deployment while ensuring high-quality standards. The
CI/CD pipeline integrates comprehensive testing, including
unit, integration, and end-to-end (E2E) tests, to validate the
software at all levels.

F. Release

Release management in the proposed micro frontend archi-
tecture uses continuous delivery techniques to allow seamless
deployment of updates across independent components. Once
all tests and performance checks are successfully completed
within the CI/CD pipeline, a new deployment artifact is
generated and prepared for release. This artifact encapsulates
the validated code, ensuring that only rigorously tested and
performance-compliant components are deployed.

Through automation, CD minimizes manual intervention
and reduces the risk of errors during deployment, enabling
faster delivery of new features and improvements. By adopt-
ing CD practices, development teams can focus on iterative
improvements, with the assurance that each deployment meets
predefined quality and performance standards.

G. Monitoring

Post-launch performance monitoring is critical for main-
taining software quality, ensuring that applications consis-
tently meet technical standards and business goals over time.
Monitoring allows for continuous tracking of key metrics,
such as load times, error rates, and system resource usage,
which reveal how well the application performs in real-world
conditions.

Gathering data directly from real users offers deeper in-
sights into how performance changes impact user experience,
identifying patterns or specific areas needing improvement.
These metrics provide actionable data, enabling teams to detect
potential issues early and make timely adjustments to enhance
system stability and responsiveness. Effective monitoring not
only helps to quickly resolve emerging issues but also supports
ongoing optimization, ensuring the application remains aligned
with evolving user needs and expectations.

IV. CASE STUDY: ROBOCUP SSL

RoboCup is a prestigious international robotics competition
designed to advance the fields of autonomous robotics and

artificial intelligence. Within the competition, the Small Size
League (SSL) [23] is one of the oldest and most challeng-
ing categories. The league’s emphasis on speed, agility, and
decision-making presents unique challenges, requiring teams
to design robots capable of navigating dynamically changing
environments while executing complex strategies.

In the RoboCup SSL robot soccer competition, two teams
of mobile robots compete, guided by the standardized vision
system. This system processes data from overhead cameras to
track all field objects. A human referee operates a community-
maintained game controller to manage the match. Each team’s
off-field computer receives positional data and referee com-
mands to set strategies, which govern robot actions. Each
team’s computer performs most of the computation and ex-
changes information with the robots using wireless communi-
cation. Figure 4 illustrates the dynamics of controlling robots
during a typical SSL match.

Fig. 4. General dataflow for Small Size League environment.

For the case study, a requirements gathering process was
conducted with the system stakeholders, represented by the
RobôCIn team – a longstanding competitor in the SSL cate-
gory, who aims to use the new software as a migration from
the previous monolithic architecture. Based on the collected
requirements, the system was expected to support several
functionalities, including match playback, 3D visualization,
real-time match information, and parameters management for
controlling backend services.

The system1 was developed using a micro frontend architec-
ture composed of fully independent applications, as presented
in Figure 5. The architecture is composed by two key com-
ponents: client-side MFEs and server-side BFFs. Client-side
components are designed to run directly in the web browser,
adhering to World Wide Web Consortium (W3C) standard
web technologies such as HTML, CSS, and JavaScript. On
the server side, a broader range of technology options was
available.

To bootstrap the client-side applications, Vite was selected
as the build tool, handling tasks such as bundling, development
server setup, minification, and asset management. TypeScript,

1Available at https://github.com/ssl-core/ssl-core
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Fig. 5. Screenshot of the developed application

a strongly typed superset of JavaScript that compiles to
JavaScript at build time, was used as a primary programming
language to provide a layer of type safety. In alignment with
the principles of micro frontends [2], the applications rely on
native browser features rather than on a specific framework,
allowing flexibility and the ability to integrate any frontend
framework as needed.

On the server side, the BFFs are written in Go, known for
its robust concurrency model. Go was chosen to ensure effi-
cient handling of multiple requests, making it well-suited for
BFFs’ intermediary role in managing communication between
frontends and backends.

All components are containerized using Docker, with
Docker Compose orchestrating the containers, ensuring con-
sistent environments for development, testing, and deployment
across different stages of the system’s lifecycle. This approach
simplifies scaling and managing the distributed architecture
inherent to micro frontends. Each component is designed
with a specific responsibility, working independently to handle
different aspects of the system while collaborating through the
Application Shell. The following is a summary of the main
components and their responsibilities:

• Application Shell: Serves as the entry point and orches-
trates dynamic loading, rendering, and communication
between micro frontends. Communication between micro
frontends is facilitated through an event-driven model
using the Broadcast Channel API. The shell supports
integration via WebComponents or IFrames, with Web-
Components being the preferred approach for their native
integration and reusability.

• Player MFE: Responsible for real-time match playback,
synchronizing other micro frontends with match data. To
meet performance requirements, it uses Web Workers to
process match data off the main thread, ensuring smooth
playback. A WebSocket connection is maintained with
the Player BFF to receive match data, which is broadcast
to other components via the event bus.

• Viewer MFE: Renders a dynamic 3D match environment
using Three.js and the browser’s GPU. It also utilizes Web

Workers for parallel processing to handle the computa-
tional demands of real-time rendering. The Viewer MFE
operates across three threads: the main thread for user
interaction, the communication worker for event bus data
handling, and the rendering worker for 3D rendering.

• Scoreboard MFE: Provides real-time match updates,
displaying score and event data. It is dynamically inte-
grated through the Application Shell and communicates
via the event bus. It also offers interactivity, allowing
users to click on match events and adjust the match
timeline accordingly.

• Parameters MFE: Manages configuration inputs for
backend connections and system parameters. It is im-
plemented as a modal window that prompts the user
for backend IP and port details. Once the connection is
established, the MFE communicates with its BFF to store
and distribute the configuration settings to the appropriate
services, enabling system calibration and control.

Figure 6 provides a complete visualization of the archi-
tecture, including how the components are integrated and
communicate through various protocols.

Fig. 6. Micro frontend architecture overview

V. EVALUATION

This section evaluates the proposed micro frontend ap-
proach by assessing the system’s quality attributes outlined
in the requirement analysis phase. The assessment uses a
multidimensional comparative analysis against a monolithic
application developed by the RobôCIn team [24], built in C++
with the Qt framework for Linux platforms.

Static code analysis, as defined by ISO/IEC/IEEE
24765 [25], was used to extract code metrics for this evalua-
tion. This method analyzes code structure, form, and content
without executing it, providing quantitative data on software
quality attributes. Various open-source and commercial tools
processed the system’s source code files, excluding configura-
tion and style files.

A. Performance Efficiency

To evaluate the performance of the micro frontend architec-
ture, a rendering comparison was conducted against RobôCIn’s
monolithic software for real-time rendering of a live match –
the system’s most critical use case.

Tests were performed on a machine running Ubuntu 22.04,
equipped with an Intel® CoreTM i5-5200U processor, 8GB
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DDR3 RAM, a 1TB HDD, and a NVIDIA® GeForceTM 920M
GPU with 2GB of VRAM. In terms of evaluation methodol-
ogy, a 30-second sample was collected for the live match use
case, with camera frame rate transmissions ranging from 1 to
120 FPS, generated by a workload generator. The monolithic
system received the packets via UDP multicast, while the
micro frontend’s BFFs received them through gRPC, both
within a local network. Frame rate measurements were taken
as the time difference between rendering consecutive frames,
using Three.js for the micro frontend and Qt for the monolith.
Outliers beyond three standard deviations were discarded, and
the average frame rate for each camera configuration was then
calculated. The results are presented in Figure 7.

Fig. 7. Comparison between monolithic and micro frontend approach

The proposed micro frontend approach consistently delivers
rendering performance between 24 FPS and 30 FPS, aligning
with industry standards for web videos, television, and films.
This is achieved even on an outdated machine with relatively
modest specifications. In contrast, the monolithic application
struggles to maintain performance, rendering at only 7 FPS
and requiring significantly more powerful hardware to perform
adequately.

Despite being written in a low-level language without com-
munication overhead, the monolith exhibits high RAM and
CPU usage, particularly due to the tight coupling of robotic
control modules within the Qt-based interface. In contrast, the
micro frontends benefits from modern web technologies and
WebGL optimizations, which are designed to perform well
even on slower devices. Additionally, the communication over-
head in the micro frontend architecture differs from traditional
microservices, as the components are composed within a single
view by the browser, resulting in minimal communication
latency.

A similar experiment was conducted using a machine from
the RoboCup SSL competition environment, equipped with
an Intel® CoreTM i7-8565U CPU, 16 GB of RAM, and a 256
GB SSD, running Ubuntu 20.04. The evaluation focused on
validating whether the system could consistently achieve a
target frame rate of at least 16 frames per second (FPS) –

the perceptual lower bound for smooth motion for the human
eye [26] – during 3D real-time rendering for live match. The
micro frontend achieved an average latency of 17.39 ± 3.47
ms between frame renderings during live streaming. This
translates to an approximate frame rate of 57 FPS, satisfying
the minimum requirements.

B. Maintainability

Unlike performance efficiency, maintainability is hard to
quantify precisely and automatically, as it often relies on the
team’s judgment of the code structure, readability, and modu-
larity. To provide a more objective framework for evaluating
maintainability, standardized metrics like the Maintainability
Index have been developed, alongside various tools with their
own scoring systems.

The Maintainability Index (MI) is a widely adopted metric
that combines three traditional code measures – Halstead’s
Volume (HV), McCabe’s cyclomatic complexity (CC), and
lines of code (LOC) – into a single-value indicator using a
polynomial formula [27]. The original formulation of the MI
is expressed as follows:

MI = 171− 5.2 ln(HV )− 0.23×CC − 16.2 ln(LOC) (1)

The MI was calculated using specific software tools for each
programming language: Code Health Meter for TypeScript, Go
Cyclo for Go, and CppDepend for C++. Results are shown in
Table I.

TABLE I
COMPARISON OF MAINTAINABILITY INDEX BETWEEN THE COMPONENTS

Component Maintainability Index (MI)
app-shell 131

params-mfe 143
player-mfe 132

scoreboard-mfe 140
viewer-mfe 128
player-bff 130

Micro frontend (average) 134
Monolith 126

Overall, the results indicate that the micro frontend ar-
chitecture enhances maintainability compared to traditional
monolithic systems. Each micro frontend component achieved
a higher MI than the monolith, benefiting from optimizations
and smaller codebases with reduced technical debt. This
improvement contributes to greater adaptability and long-term
sustainability of the software. However, the Maintainability
Index alone does not capture the full range of benefits
and complexities inherent in a distributed system. Thus, the
evaluation focuses on demonstrating how the average MI
has improved while acknowledging the broader challenges of
distributed architectures.

C. Reliability

In a broader context, metrics such as Mean Time to Failure
(MTTF), Mean Time to Repair (MTTR), and Mean Time
Between Failures (MTBF) are commonly used to assess
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reliability. However, these metrics require prolonged user
monitoring post-release to collect accurate data. In this work,
reliability was assessed using metrics from Embold, a com-
mercial static analysis tool, and SonarQube, an open-source
platform. Table II summarizes the findings.

TABLE II
RELIABILITY METRICS FROM EMBOLD AND SONARQUBE

Application Embold Score SonarQube Rating
Micro frontend 100 A

Monolith (Baseline) 91 C

Both analyses indicate the micro frontend’s high reliability,
achieving a perfect Embold score of 100 and a SonarQube
”A” rating. In contrast, the Monolith scored 91 in Embold
with a ”C” rating in SonarQube, reflecting a higher likelihood
of system failures.

VI. CONCLUSION AND FUTURE WORK

This work presents a novel approach for developing GUIs
in robotic systems through the modeling, implementation, and
evaluation of a micro frontend architecture based on OOM
and DDD principles. The proposed methodology covers the
entire software development lifecycle, including requirements
gathering, architectural modeling, implementation, testing, de-
ployment, and the formulation of CI/CD strategies.

An evaluation based on ISO/IEC 25010 confirmed the sys-
tem’s robustness across multiple quality metrics. Performance
tests revealed strong results, with rendering on lower-spec
hardware far exceeding the monolithic system’s capabilities.
In RoboCup SSL live streaming tests, the system maintained
57 FPS, emphasizing its real-time responsiveness. Embold
and SonarQube analyses demonstrated high maintainability,
with additional improvements in reliability that reinforce the
architecture’s scalability.

Future work will focus on comparative studies of devel-
oper productivity between monolithic and micro frontend
architectures, along with post-release evaluations of reliability
and maintainability. Additionally, promoting the system for
RoboCup SSL and encouraging community-driven develop-
ment could improve the platform’s extensibility with more
micro frontends and plugins to support a broader range of
applications.
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