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Abstract—Space robotic missions are taken on a highly un-
certain ground, yet require high autonomy. In space, events are
unknown and their effects are hard to predict. Mission designers
are forced to make decisions despite an inherent lack of informa-
tion and this results in complex and stiff specifications. Stiffness
flags for brittleness. Towards flexibility and modularity, Behavior
Trees foster a tractable notation for reactive behavior, attracting
the spotlight of robotic mission specifications. However, they lack
support for taming uncertainty at runtime. This paper proposes a
first step towards the extension of behavior trees with adaptability
in order to deal with uncertainty. Our implementation extends
the behavior trees constructs with adaptable nodes, i.e., nodes
that can be hot-swapped at runtime. Our framework relies
on quasi-natural language requirements modeling in FRETISH
notation, with transformations to uncertainty-aware behavior
trees and deployment to space robotics scenarios in the context
of Space ROS. We showcase the use of our framework within
the simulation of a NASA mission on Mars.

Index Terms—Space Robotics, Uncertainty, Robotics Mission
Specification, Behavior Trees, Self-Adaptation.

I. INTRODUCTION

Robotics has become instrumental to meeting economic
and sustainable goals [1]. With robots increasingly deployed
across various domains, software has become pivotal in en-
abling high autonomy and robustness in real-world robotic
applications [2]–[4]. For instance, service-based software ar-
chitectures have shown promising results in the development
of space robots to be deployed on Mars [5]. However, the
development of practices to high-autonomy robotics software
is in the early stages; engineers lack sophisticated tools and
methodologies needed to design and deploy systems that
can reliably function in dynamic and unpredictable environ-
ments [3]. A key aspect is self-adaptation, allowing robots to
maintain functionality despite runtime uncertainty [6], [7].

As the role of software in robotics grows, software en-
gineering techniques are crucial across mission specifica-
tion [8]–[10], architectural definition [11], [12], component
design [13]–[15], and verification and validation [16]–[19]. In
general, autonomy in robotics aims to reduce human interven-
tion. Significant challenges remain to enable robots to adapt
to real-world variability [4], [20], [21]. Resilient solutions are
needed to address the openness and uncertainty of operational
environments, necessitating adaptive capabilities.

Mission engineering approaches aim to simplify the design
and deployment of robotic missions. Gil et al. [22] introduce a
framework for specifying multi-robot missions with elements
like objects, capabilities, and actions, emphasizing adaptability
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Fig. 1: Adaptable Uncertainty-Aware Rover on Mars Mission

to real-world variability and task reusability. Garcia et al. [23],
[24] propose a domain-specific language for generating and
managing multi-robot missions. Rodrigues et al. [12] enable
automated task reallocation in hierarchical plans. However,
these approaches lack mechanisms to handle runtime uncer-
tainty. This complicates mission specification and results in
rigid designs; still, unpredictable changes at runtime hinder
robotic mission engineers in taming uncertainty.

Robotic missions are taken on uncertain ground, events are
unknown at design time, and the effects of such events are
hard to predict. Mission designers, then, are forced to make
decisions based on uncertainty when specifying the mission.
This results in complex and stiff mission specifications. Be-
havior Trees (BTs) are known to enable the specification of
reactive behavior [25], yet the support to express alternative
behaviors to overcome runtime uncertainty is limited.

In this paper, we focus on managing robotic missions,
particularly space exploration, by integrating user-defined re-
quirements in FRETISH [26] with BTs. We enhance BTs
with adaptable nodes, enabling runtime hot-swapping to build
Uncertainty-aware Behavior Trees. This allows mission spec-
ifications to evolve during execution as new information be-
comes available. New nodes can be added to address emerging
needs without redeploying the entire BT.

Figure 1 illustrates how our extension to BTs, i.e.,
Uncertainty-aware BT, can be used in practice in the context
of NASA’s Mars Science Laboratory (MSL) mission.
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We take inspiration from the real challenges faced by
NASA’s Curiosity rover, which experienced an anomalous and
premature degradation of the wheels. Ultimately, we showcase
this scenario as an end-to-end process, from requirements
as mission descriptions to deployment of the mission in the
robot, and to mission re-definition and re-deployment.

The rest of the paper is as follows: A running example of
the methodology is presented in Section II. An overview of
the solution is presented in Section III. Section IV showcases
adaptable and uncertainty-aware BTs in space robotics. Re-
lated works are reviewed in Section V. Finally, the article is
concluded in Section VI.

II. RUNNING AND MOTIVATING EXAMPLE

In 2017, the images sent back to Earth by NASA’s MSL
Curiosity rover revealed that the wheels of the rover suffered
anomalous and premature wear [27]. Sharp and wind-eroded
pyramidal rocks that were on the route of the robot caused
holes and tears in the rover’s wheels, representing a serious
concern regarding the rover’s life expectancy. In order to solve
this issue, MSL started an assessment of the damage and
its causes to find measures aimed at minimizing the damage
progression [28]. Interestingly, previous Mars rovers, whose
wheel design was leveraged for the Curiosity rover, did not
experience the same issue. The rocky terrain causing the
wheels’ unexpected wear was different from the one found
in the previous landing sites and was not accounted for during
testing. Curiosity’s wheels were designed according to a very
limited knowledge of the terrain that would eventually have
been found on the rover’s landing site on Mars. Moreover,
the navigation algorithm employed was irrespective of the
(uncertain) terrain surface, with wheels moving at a too-high
speed on pointed rocks. Although the design and functionality
of the rover had been extensively tested, the lack of precise
knowledge of the actual terrain features represented an uncer-
tainty that, before the mission started, could not be solved. As
a solution to this problem, engineers provided a set of guide-
lines concerning the robot’s navigation strategy over what they
called “wheel-hostile terrains”. These guidelines involve the
reduction of the robot’s speed, the minimization of turning
movements, and driving backward over this kind of terrain
to preserve the more damaged front wheels. However, their
implementation required an update of the robot’s software,
while a new wheel design was developed for the subsequent
Mars rovers.

Summarizing, the lack of knowledge about the Mars ter-
rain represented an uncertainty that prevented the complete
envisioning and evaluation of the possible runtime scenarios
that might arise during mission execution, which eventually
led to the design of multiple alternative behaviors required
to address them. In general, accounting for uncertainty calls
for the ability to envision and develop multiple strategies
(i.e., alternative behaviors) to respond to the high variety of
uncertain conditions that a robotic system may face during
its operation [29], [30]. However, it is not always possible to
foresee all the possible scenarios at design time due to the

lack of knowledge of the actual operational environment [31].
In fact, as in the MSL’s case reported above, new operating
scenarios and related challenges could arise over time, while
their solutions can not be known in advance.

For this reason, in many domains such as space exploration,
robot’s behavior specification is challenging since:

• It is impossible to anticipate all the possible runtime
scenarios;

• It is impractical to specify all the alternative behaviors in
a unique model (e.g., a unique BT);

• The behavior model should allow the specification of the
condition leading to the execution of the proper behavior;

• The behavior model should be amenable to evolve and
accommodate new behaviors.

In this paper, we propose a solution to the challenges listed
above. To guide the reader through the description of the
solution we present a simplified, yet informative example that
considers an exploration task performed by a robot. In Sec-
tion IV, we will return to the MSL-inspired example to show-
case our approach at work. The robot has to move through
the environment to get images; if its battery is low, the robot
should go back to its base for charging. As for the Curiosity
rover, the exploration task is affected by uncertainties since the
navigation should account for the variety of terrains, hence,
different navigation modes need to be defined. In particular,
if the terrain is composed of sand, the robot can move at its
maximum speed; if it is made of sharp rocks, the robot needs to
reduce the speed to the minimum to avoid damage. However,
as discussed above, the robot behavior model should consider
the possibility of encountering additional surfaces (i.e., mud,
cobblestones) that, at design time, cannot be foreseen and for
which the most appropriate robot behavior is unknown.

III. UNCERTAINTY-AWARE MISSION SPECIFICATION

To tame uncertainty in the mission specification in response
to the challenges discussed in the previous section, the mission
specification must encode multiple alternative behaviors and
the conditions associated with them to dynamically react
to changing conditions. Moreover, it must be adaptable and
amenable to be easily extended in response to new knowledge
acquired during runtime. This can (i) allow changing the
behavior of the robot under different conditions at runtime,
(ii) avoid the hard-coding of all strategies into the mission at
design time, and (iii) increase modularity and flexibility.

Figure 2 depicts our approach for realizing uncertainty-
aware robotic missions. Key-enabler to embedding uncertainty
in robotic missions specifications, our approach envisions the
specification of robotic missions through an extended version
of BTs, namely Adaptable BT. Using Adaptable BTs, mission
designers can model missions while accounting for uncer-
tainties by specifying a set of mission alternatives, modeled
as separate BTs, that describe all possible behaviors to be
executed when facing different conditions during mission
execution. The conditions leading to the execution of a given
alternative are specified using a FRETISH-based syntax. These
three inputs (adaptable BT, alternatives, and conditions) are
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Fig. 2: Overview of our approach

then automatically compiled into a full BT (uncertainty-aware
BT), which (i) integrates all the alternatives, (ii) owns the logic
required for their selection, (iii) can be deployed on the robot
and executed. In the following, we specify each of the elements
that build our solution.

A. Mission specification through Adaptable BT

Adaptable BTs extend BTs with a novel leaf node, called
adaptable node that allows the specification of an uncertainty-
affected portion of the mission. Adaptable nodes model a point
of uncertainty in the mission for which the actions performed
by the robots cannot (or are inconvenient to) be fully specified
during the mission design. In other words, adaptable nodes are
used as a “placeholder” for a set of alternatives that specify
the possible robot’s behaviors at runtime, in response to the
(uncertain) runtime conditions. Adaptable nodes are useful
to model and manage the known unknowns. In fact, before
mission execution, the mission specifier should know that a
specific part of the mission is subject to uncertainty and can
specify such behavior through adaptable nodes.

Adaptable nodes are abstract, meaning that unlike action
and condition leaf nodes, adaptable nodes are not executable,
i.e., they cannot be ticked, since their behavior is not defined
(do not return Failure, Running, or Success like other leaf
nodes). Graphically, adaptable nodes are represented with
dashed boxes. Figure 3 shows the adaptable BT built to model
the running example described in Section II. The BT features
a condition node (the ellipses with label low battery), an
action node (the solid box with label nav to base), and the
novel adaptable node (the dashed box with label exploration).
The adaptable node specifies the mission portion affected by
uncertainty, for which a unique behavior cannot be modeled
beforehand; rather, multiple alternatives, describing the behav-
ior required whenever the robot is moving on the sand or
on the rocks, are required. It is important to note that some
alternative behaviors can be defined before mission execution.
However, additional alternative behaviors can be specified
and added during mission execution. See Section III-D for
a description on how the addition of mission alternatives at
runtime works.

?

exploration

low_battery nav_to_base

→

Fig. 3: Graphical representation of an adaptable task

The alternative behaviors for an adaptable node are defined
as fully specified BTs, externally provided as separate models,
that encode the different strategies or actions to be executed
according to the possibly different and changing runtime
conditions. Each alternative represents a specific approach to
achieve a specific task, hence providing the robot with multiple
options that can be chosen at runtime.

To make the mission executable, adaptable BTs need to be
compiled into a full BT that embeds the alternatives defined
for the uncertain mission portions and their selection logic. As
we will detail later, the full BT is generated by replacing the
adaptable BT’s adaptable nodes with a suitably built subtree
containing the set of specified alternatives and the proper
selection logic.

B. FRETISH-based conditions specification

The specification of the conditions leading to the execution
of the mission alternative is provided through the FRETISH
syntax. FRETISH is a structured natural language developed
by NASA to elicit system requirements, allowing their
unambiguous specification and formalization [26], [32]. Our
approach leverages FRETISH due to its structured yet simple
syntax, which facilitates machine parsing and processing,
hence making it well-suited for unambiguously specifying the
conditions for mission alternatives. A FRETISH requirement
is composed of six fields: scope, condition, component,
“shall”, timing, and response. The scope field specifies the
interval in which the requirement holds; the field condition
is a Boolean expression that triggers the need for a response;
the component defines the component targeted by the
requirement; shall is a keyword stating that the component
behavior must conform with the requirement; timing is an
optional field that specifies when the response is expected;
response is a Boolean expression that specifies the conditions
that must be satisfied by the component.

In our approach, we consider the conditions for the selection
of the mission alternatives as requirements that must hold
when their related adaptable node should be executed.1 Thus,
developers can leverage the FRETISH structured syntax to
specify these requirements, without the need for directly
coding the subtree that checks the conditions and realizes
the alternative’s choice within the mission BTs. In particular,
we employ a subset of the FRETISH grammar to specify

1Although the adaptable node is not executable, we write “the execution
of the adaptable node” to refer to the execution of the portion of the mission
represented by this node, for which alternatives are defined.
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these conditions, as described in the following. For each
adaptation alternative provided within the mission, a FRETISH
requirement must be specified. By leveraging the semantics of
the FRETISH grammar, each requirement describes, through
the scope field, the name of the adaptable node during whose
execution the requirement must hold. The condition field
specifies the conditions enabling the related alternative as a
Boolean expression. The component field defines the system
component targeted by the requirement; in our approach,
this component is always the mission. Finally, the response
field specifies which is the alternative that should be ex-
ecuted when the defined conditions hold. The response is
specified as a Boolean expression comparing the name of
the alternative with the selected alt variable. In summary,
the specified conditions always have the following structure:
“in <adaptable node> if <condition> mission shall satisfy
selected alt=<alt name>”. The definition of the grammar
of the FRETISH language is available online within the
replication package of this work.2 Table I shows the FRETISH
requirement within the FRET tool3 related to our running ex-
ample. By following the example description, the requirement
states that in the scope of the exploration adaptable node, if
the robot is on a sandy terrain, the alternative to be executed
should be the one named “sand alternative”, which involves
the maximum speed movement of the robot.

[SCOPE] [CONDITIONS] [COMPONENTS*] SHALL* [TIMING] [RESPONSE*]

In Exploration IF sand terrain Mission SHALL SATISFY
selected alt=sand alternative

TABLE I: Requirement in FRETISH syntax.

C. Uncertainty-aware BT generation

Since adaptable nodes cannot be executed (i.e., they do
not have a defined returned value when ticked), the mission
specified through the adaptable BT cannot be executed as well.
To allow the execution of the mission and the runtime selection
of the alternatives, a complete BT is required (uncertainty-
aware BT in Figure 2). This tree must own the defined
alternatives and it must encode the conditions needed for their
runtime selection. To generate the uncertainty-aware BT, the
following two steps are needed: (i) FRETISH requirements
have to be translated into fragments of BT that perform the
condition checking (from hereon, we will refer to these frag-
ments as “condition-checking subtrees”); (ii) all the condition-
checking subtrees and their corresponding alternatives need to
be suitably integrated into the adaptable BT and put in place
of the adaptable node.

Concerning the creation of the condition-checking subtrees,
they are generated for each FRETISH requirement, i.e., a
condition-checking subtree is generated for each alternative.
These subtrees are generated according to the Boolean ex-
pression in the condition field of the requirement (see Sec-
tion III-B). When ticked, they must return Success if the

2https://github.com/RoboChor/towards-uncertainty-aware-bts
3https://github.com/NASA-SW-VnV/fret

condition expressed through the Boolean expression holds and
Failure otherwise. To build a condition-checking subtree, the
Boolean expression of the related FRETISH requirement is
first parsed into a tree where: (i) inner nodes are the AND, OR,
and NOT operators and (ii) leaves are the checked conditions.
Then, the subtree is built according to Algorithm 1, which is
run from the root of the Boolean expression tree, as follows:

• If the current node is a leaf node (i.e., it is the label of
the checked condition), return a condition node with the
same label (lines 2-5);

• If the current node is a NOT operator, create a new
inverter node, add the result of the algorithm execution
on the operator’s node child as a child of the new node,
and return it (lines 6-9);

• If the current node is an OR operator (resp. AND), create
a new fallback node (resp. sequence node), add the result
of the algorithm execution on the operator’s left and right
children as children of the new node, and return it (lines
10-16 and 17-23).

Algorithm 1 Condition-checking subtree generation algorithm
1: function GENSUBTREE(node)
2: if node is a leaf then
3: create a new condition node
4: condition node.label← node.label
5: return condition node
6: else if node is “NOT” then
7: create a new inverter node
8: inverter node ← GENSUBTREE(node.child)
9: return inverter node

10: else if node is “OR” then
11: create a new fallback node
12: children← [ ]
13: APPEND(children, GENSUBTREE(node.left))
14: APPEND(children, GENSUBTREE(node.right))
15: fallback node.children← children
16: return fallback node
17: else if node is “AND” then
18: create a new sequence node
19: children← [ ]
20: APPEND(children, GENSUBTREE(node.left))
21: APPEND(children, GENSUBTREE(node.right))
22: sequence node.children← children
23: return sequence node

After the condition-checking subtree is generated, it is
connected with the related alternative using a sequence node
by keeping the condition-checking subtree as the first child.
This structure ensures that, when the tree is ticked, the tick
is propagated to the alternative only if the condition-checking
subtree returns success (i.e., only if the conditions enabling
the alternative execution hold). The subtrees resulting from
this process are connected through a fallback node; then, only
one alternative is executed. Note that, for the potential overlap
in conditions among multiple alternatives, this structure pri-
oritizes the alternatives according to their order (i.e., the first
left alternative with successful condition-checking is selected).
Figure 4 shows the structure of the tree resulting from the
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?

→

Alt1 cond. subtree Alt1 Altn cond. subtree Altn

... →...

Fig. 4: Structure of the alternative selection and execution
subtree

described process. This tree is substituted to the adaptable
node in the adaptable mission BT.

The BT resulting from this process encodes the whole
mission and owns the decision logic required for selecting
the right alternative to be executed according to the FRETISH
requirements specified by the developer. Differently from the
adaptable BT described in Section III-A, this tree can be
executed since it only contains condition and action node
leaves, whose behavior is defined [25].

D. Adaptable BT execution

The uncertainty-aware BT is deployed and controlled by
a BT management component at runtime (Behavior Tree
Manager in Figure 2). Upon the discovery of new conditions
requiring a different behavior, a mission alternative can be
defined. A new version of the uncertainty-aware BT is then
generated and provided to the behavior tree manager. Thanks
to the reactive nature of BTs, whose nodes are continuously
ticked, the new alternative will be available as soon as a new
tick is sent from the tree’s root without stopping the mission:
once the new specified conditions are evaluated, the newly
associated alternative subtree is executed, if required by the
mission’s runtime state. This allows the continuous refinement
of the BT in order to cope with unexpected situations that
require a different and alternative strategy, like the case of the
NASA motivating example.

IV. ADAPTABLE AND UNCERTAINTY-AWARE BEHAVIOR
TREES IN PRACTICE

In this section, we demonstrate our approach in the space
domain using the MSL Curiosity rover example from Sec-
tion II. The rover collects Mars soil rock samples by moving
to a designated location, deploying its tool arm to drill the
rock, and depositing the powderized sample in a safe case.
It also takes pictures before drilling and after completing the
collection to document the process. As discussed in Section II,
the described mission is affected by uncertainty due to the lack
of knowledge about the actual conditions of the terrain upon
which the rover has to move. In fact, different terrains like
dust or rocks require different navigation strategies in order
to avoid wheel damage. The specification of the mission has
to consider this uncertainty and has to allow the definition of
multiple navigation strategies. In the following, we detail how
the mission is modeled while accounting for this uncertainty
according to our approach.

Fig. 5: Adaptable BT for the MSL Curiosity scenario

A. Mission specification through Adaptable BT

Being affected by uncertainty on the navigation, the mission
is modeled through an Adaptable BT that uses an Adaptable
node to model the navigation. Figure 5 shows the adaptable BT
modeled for the mission using Groot24. Alongside the actions
nodes (e.g., Stop, OpenToolArm, Drill, etc.) and the condition
nodes (e.g., IsInLocation, IsArmInPosition, IsDigged, etc.)
modeling the “fixed” portions of the mission, the adaptable
node is employed to model the uncertainty-related portion
of the mission (see the highlighted navigation node). By
leveraging the BehaviorTree.CPP XML syntax, we model this
node by using the <Adaptab le> tag, which we reserve for
the specification of adaptable nodes.

According to the guidelines for the robot’s navigation men-
tioned in Section II, we developed two alternative behaviors to
realize the navigation on different terrain conditions. Figure 6
and Figure 7 show the BTs realized to model the mission
alternatives. When on dust terrain, the robot moves forward
at its “normal” speed: the robot has to turn toward the target
location and drive forward (Figure 6). When on rocky terrain,
as prescribed by the guidelines, the robot has to turn around
(after checking the safest direction) and then move backward
at a low speed toward the target location (Figure 7).

Fig. 6: on dust mission alternative

To allow the execution of the correct alternative, we
specified, for each of the two alternatives shown above, the
requirements using the FRETISH language, as in Table II. The
first requirement (Req1) states that, if the condition OnDust
holds, the alternative to be executed is the one named on dust

4https://www.behaviortree.dev/groot
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Fig. 7: on rocks mission alternative

(i.e., the navigation on dusty terrain). The second requirement
(Req2) demands that the alternative on rocks (navigation on
rocks) has to be executed when OnRocks holds.

We modeled the two alternatives based on our design-
time knowledge of possible terrain conditions. As discussed,
additional BTs for robot navigation can be introduced during
mission execution, if new terrain characteristics are discovered.
This does not require updating the adaptable BT.

[SCOPE] [CONDITIONS] [COMPONENTS*] SHALL* [TIMING] [RESPONSE*]
(Req1) In navigation IF OnDust Mission SHALL SATISFY
selected alt=on dust
(Req2) In navigation IF OnRock Mission SHALL SATISFY
selected alt=on rocks

TABLE II: FRETISH requirements for navigation node.

B. Uncertainty-aware BT generation

As described in Section III-C, the mission’s adaptable
BT, the alternatives, and their associated requirements are
compiled into a full BT that can be executed by the robot.
We implemented the BT generator in such a way that the
requirements are translated into subtrees that check the condi-
tions required for the execution of the alternatives, according
to Algorithm 1. The uncertainty-aware BT is then completed
by substituting the adaptable node to realize the structure
shown in Figure 4. In our scenario, the two condition-checking
subtrees are built of the only conditions nodes OnDust and On-
Rocks, respectively. Each of these subtrees is then connected
through a <Sequence> node with its related alternative.
Finally, the navigation subtree is composed by connecting
the resulting subtrees through a <F a l l b a c k> node. This is
substituted to the<Adaptab le> node to form the uncertainty-
aware BT that can be executed by the Behavior Tree Manager.

C. Mission execution

We ran our scenario on the Mars Rover demo provided
within the Space ROS demos Github repository5. We im-
plemented the Behavior Tree Manager using the Behav-

5https://github.com/space-ros/demos

iorTree.CPP library6 to parse the BT and control the robot
accordingly. The Behavior Tree Manager implements the
action nodes specified in the mission model by sending the
appropriate commands to the robot to control its behavior.
Moreover, to evaluate the condition nodes, we integrated a
condition manager to both keep track of the robot’s status and
simulate different terrains types.

Figure 8 shows some screenshots from the mission execu-
tion in the Gazebo simulation environment7. The screenshots
show the main phases of the mission: the robot starts the
mission (Figure 8a) and approaches the location according to
the terrain conditions (screenshots refer to the dusty terrain,
Figure 8b). When received at the location the robot takes
a picture, drills the rock, and trickles the sample inside
(Figure 8c). Finally, the mission is finished (Figure 8d).

The adaptable BT of the mission with alternatives and
FRETISH requirements, the uncertainty-aware BT generator,
its output, and the Behavior Tree Manager developed for this
work are publicly available on Github8.

(a) Mission start (b) Approaching

(c) Taking picture & drilling (d) End of mission

Fig. 8: Screenshots from the Mars Rover mission execution

V. RELATED WORK

In this section, we compare our uncertainty-aware BTs to
relatable approaches that leverage uncertainty representation
in robotics, focusing on dynamicity in BTs, specification
relaxation techniques for runtime adaptation, and formalisms
for uncertainty-aware planning in robotics.

A. Dynamicity in Behavior Trees

BTs gained traction as a formalism to specifying robotics
behavior due to their flexibility and modularity. Robotics
behavior asks for rich reactions to environmental changes

6https://www.behaviortree.dev/
7https://gazebosim.org/home/
8https://github.com/RoboChor/towards-uncertainty-aware-bts
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and BTs facilitate such modeling in comparison with the
traditionally used state machines [15], [33]. A recent study on
that mined behavior-tree Domain Specific Languages (DSLs)
from GitHub found that dynamicity is typically achieved
through runtime model modification, e.g. changing nodes at
runtime, offering more flexibility to runtime modifications in
comparison with activity diagrams and state diagrams [34].
Both BehaviorTree.CPP and py trees9 expose aspects of dy-
namic languages; they are interpreted and allow for creating
new node types and modifying the shape of the syntax tree at
runtime. We rely on BehaviorTree.CPP to implement runtime
adaptation, though, differently from the native language we
enhance BT modeling with a new type of leaf node.

B. Relaxing Specifications for Runtime Adaptation

The lack of information about runtime conditions presents
a significant challenge in robotics software engineering [3].
We draw on self-adaptive systems literature to compare ap-
proaches for handling uncertainty [35]. Rigid behavioral speci-
fications often hinder runtime adaptation by forcing developers
to fully specify behaviors at design time. In response, some
works introduce flexible constructs that enable underspecified
behaviors, allowing decisions to be made at runtime.

For instance, in [36] the authors discuss relaxing specifi-
cations by using flexible operators (e.g., MAY, AS CLOSE
AS POSSIBLE TO) and uncertainty annotations (e.g., envi-
ronmental, behavioral) in modeling. These operators, based on
fuzzy logic, have shown promise in adaptive robotic systems
(aerial and terrestrial) implemented in the Anunnaki frame-
work, which uses uncertainty-aware requirements specification
to enhance flexibility under uncertainty [37]. Similarly, Solano
et al. [38] apply uncertainty annotations in goal models, cat-
egorizing uncertainties related to the system, goals, and envi-
ronment, including non-deterministic behaviors. This approach
embeds uncertainty through probabilistic quality attributes and
introduces a dedicated node for runtime decision-making,
enabling models to adapt to environmental changes. Filippone
et al. [39] introduce adaptable tasks within Hierarchical Task
Networks (HTNs) to specify mission segments affected by
uncertainty. Similar to our approach, alternatives are defined as
separate models selected at runtime through trigger functions
executed by the robot. However, this requires an ad hoc
mission controller outside of the main mission execution.

We use BTs for mission specification, which, in comparison
with goal models or HTNs, is closer to the execution
semantics. Our approach uses FRETISH specifications to
define conditions for executing alternatives, generating an
uncertainty-aware BT that embeds both condition-checking
and selection, without requiring extra functionality in the
behavior tree executor.

C. Other Uncertainty-Aware Formalisms in Robotics

Another line of work addresses runtime uncertainty through
automated learning for motion and task planning, where un-
certainty is a core consideration. Robot actions are modeled

9https://py-trees.readthedocs.io/en/devel/

using Markov Decision Processes (MDPs), which allow non-
deterministic actions in partially observable environments [40].
These MDPs enable researchers to train for uncertainty-
aware behavior using reinforcement learning [41], [42] or
deep learning [43]. However, MDPs represent uncertainty as
probabilistic annotations in state-machine-like models, which
lack flexibility and modularity when compared to BTs and
lack adaptable task richness leveraged in our work.

VI. CONCLUSION AND FUTURE WORK

We presented an approach to systematically handle
uncertainty in robotic mission specifications using BTs. We
extended BT constructs with an adaptable node, which enables
runtime modification of subtrees that define alternatives and
conditions, and use FRETISH to specify requirements. We
showed our approach in a scenario inspired by NASA’s Mars
Science Laboratory mission, addressing a real issue with
the Curiosity rover’s wheels. In our example, we assumed
that the robot is able to recognize the type of terrain. In
practice, this can be achieved through ML-based approaches
that classify the terrain images coming from the robot’s
cameras. Furthermore, we assumed that finding the mission
portion where adaptable nodes are required is done manually
by designers according to their knowledge. However, in the
future, this can be aided by integrating ML-based approaches
or a feedback loop to find and provide feedback about critical
mission portions subject to uncertainties.

Future work includes validating our framework in diverse
contexts with more complex missions involving multiple un-
certainty sources. We also aim to optimize the alternative
selection process to improve resource usage and implement
smart monitoring for detecting changes efficiently at runtime.

ACKNOWLEDGMENT

The authors of this paper would like to acknowledge
Matei Schiopu, from Chalmers University and Gothenburg
University, for his valuable contribution in running the
simulation. This work has been (partially) funded by (i) the
MUR (Italy) – PRIN PNRR 2022 project “RoboChor: Robot
Choreography” (grant P2022RSW5W), (ii) the European
Union - NextGenerationEU under the Italian Ministry
of University and Research (MUR) National Innovation
Ecosystem grant ECS00000041 - VITALITY – CUP:
D13C21000430001, (iii) The MUR (PNRR) and ASI “Space
it up” project, and (iv) the European HORIZON-KDT-
JU-2023-2-RIA research project MATISSE “Model-based
engineering of Digital Twins for early verification and
validation of Industrial Systems” (grant 101140216-2,
KDT232RIA 00017). This work is also supported by the
Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] S. Guenat, P. Purnell, Z. G. Davies, M. Nawrath, L. C. Stringer,
G. R. Babu, M. Balasubramanian, E. E. Ballantyne, B. K. Bylappa,
B. Chen et al., “Meeting sustainable development goals via robotics
and autonomous systems,” Nature communications, vol. 13, no. 1, p.
3559, 2022.

15

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on January 14,2026 at 07:01:42 UTC from IEEE Xplore.  Restrictions apply. 



[2] D. Brugali and E. Prassler, “Software engineering for robotics [from the
guest editors],” IEEE Robotics & Automation Magazine, vol. 16, no. 1,
2009.
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