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Abstract—Problems and failures that emerge in Cyber-Physical
Systems (CPSs), particularly in robotic applications, may orig-
inate from various sources, including software bugs, security
incidents, hardware malfunctions, and human errors. As robotic
systems are deployed in various domains and application con-
texts, such as manufacturing sites, shop floors, agriculture, and
autonomous vehicles, ensuring their safe and secure operation
is a crucial aspect. While high-fidelity simulations are fre-
quently used to validate system behavior and to perform tests,
the “simulator-to-reality gap” presents significant challenges,
requiring additional field testing to validate a system under
realistic conditions. As simulations alone are insufficient for
performing comprehensive testing and for ensuring adherence to
both functional and non-functional requirements, real-world field
testing helps to alleviate these issues. However, compared to well-
established unit testing approaches, field testing typically is still
a rather ad hoc process, with insufficient support from tools and
frameworks. Field tests often heavily rely on human observations,
hence risking overlooking critical issues. There is a pressing
need for structured, guided field-testing processes combined with
adaptive runtime monitoring to capture the data required for
effective error diagnosis and analysis. This paper introduces
initial concepts for the Smart Unified Runtime Monitoring Infras-
tructure for Guided Field-Testing (SMURF) framework designed
for robotic applications, combining structured test execution with
automated, adaptable monitors, to ensure the efficient collection
of data required for post-test analysis. Building on prior efforts
in drone field-testing frameworks, we extend our scope to identify
essential features for testing and monitoring ROS-based systems.
Future work shall further refine this process and implement
a practical framework to support developers and testers in
achieving reliable, safe, and secure robotic operations.

Index Terms—Field Testing, Robotic Application, Security,
Safety

I. INTRODUCTION

Robotic systems operate in a wide variety of different
application domains to perform diverse tasks. Examples range
from robotic systems that move goods or perform manufac-
turing tasks on a shop floor [1], small Uncrewed Aerial Sys-
tems (sUAS) that perform search-and-rescue operations [2],
to autonomous vehicles operating on roadways [3]. In these
cases, Cyber-Physical Systems (CPSs) operate in an emerging
and sometimes partially unknown environment, closely inter-
acting with human roles, e.g., workers on the shop floor or op-
erators of sUAS. CPSs in general, and robotic applications in

particular, offer significant benefits and advancements across
these diverse domains, but face challenging issues and failures,
which can be attributed to a variety of different sources, includ-
ing endemic factors such as software-related bugs, hardware-
related malfunctions, or human and operator errors [4], [5], as
well as intrusive factors like the unprecedented surge in cyber-
attacks targeting CPSs and robotic systems [6]. Therefore,
ensuring the correct and safe operation of CPSs has become a
critical concern and reinforces the need to test these systems
thoroughly. Commonly, such tests are performed through high-
fidelity simulations – to validate system behavior in a safe
environment, without the risk of damaging the environment, or
causing harm to human operators or bystanders [7]. However,
simulations alone are incapable of covering the full spectrum
of test scenarios required, and there is still a well-recognized
“simulator-to-reality gap” between virtual hardware and how
real systems behave in the physical world [8]. Therefore,
simulations are typically complemented with “real-world” field
tests, where hardware and software are tested in a close-to-
realistic environment to ensure that common scenarios are
thoroughly tested under realistic conditions.

Human observations may easily overlook or miss important
information. We are convinced that a combination of structured
test execution is needed, complemented by automated and
adaptable runtime monitoring. Data collected during runtime
can be used to discover problems, root causes, and ultimately
to detect and fix problems. In this paper, we describe ini-
tial ideas and concepts towards a Smart Unified Runtime
Monitoring Infrastructure for Guided Field-Testing, a holistic
process and infrastructure that shall guide developers and
testers through the testing and operations process of robotic
applications based on the Robot Operating System (ROS)
which serves as a platform for a wide variety of different
applications [9].

ROS-based systems require the ability (1) to be thoroughly
tested in the field, and (2) to collect relevant runtime data at the
same time. Collected runtime data can be used for performing
error diagnosis and analysis of failed tests as a foundation
for ensuring functional, safe and secure behavior. Based on
previous work in creating a structured information system for
performing system analysis and testing [10]–[12], and drone
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field tests [13], we broaden our scope and identify challenges
for providing effective testing/monitoring support for ROS-
based systems and key capabilities of a testing process and
describe our conceptual solution. The remainder of this paper
is organized as follows. Section II provides background and
basic motivation for structured testing and discusses current
issues and challenges pertaining to testing and monitoring
robotic applications. Section III introduces the concept of a
flexible adaptive testing and runtime monitoring infrastructure
and how this can be used in the context of ROS-based systems.
Finally, Section IV lays out our ongoing and planned research.

II. BACKGROUND & MOTIVATION

Defining, selecting, preparing, and executing test cases for
any CPS and robotic application requires in-depth knowledge
of the system, its use cases, and application scenarios. In
“traditional” software testing, test cases can often be generated
automatically, while testing both hardware and software is
much more complex and labor-intensive, particularly, when
systems are tested in the field [14].

Even with meticulous planning, a certain level of uncer-
tainty and adaptability must be accounted for. For instance,
environmental factors like wind or lighting conditions are not
always fully reproducible, requiring testers to maintain some
flexibility in addressing these variables. We have identified key
features (F1 - F5) needed for a comprehensive testing/moni-
toring framework.

F1 – Structured definition of test cases allows us to reuse
and re-execute test cases when, for example, new functionality
is added. Based on our own experience, in the domain of
sUAS testing [7], most field tests make heavy use of ad hoc
approaches such as checklists or spreadsheets with key testing
aspects being sketched out. In our previous work, we laid out
the concept of an “information-system guided” testing process,
driven by specific use cases [13].

F2 – A comprehensive yet easy notation, e.g., a graphical
notation is needed to capture all relevant parts of the engi-
neering, development, testing and subsequently the operation
phase of a system. To integrate field-testing activities into the
software engineering process, it is essential not only to model
and describe test cases but also to capture actors, artifacts,
workflows, and relevant resources.

F3 – The integration of runtime monitors and runtime data
into the testing process is a key objective of this work. We
observed that solely collecting testing data from the user
has several drawbacks. First, it puts additional burden on the
testers during field testing to, e.g., confirm that a robot or
drone has reached a certain test location, or has performed
an action as specified. Second, it limits the data that can be
collected, potentially losing important system data.

F4 – Facilitating traceability from test scenarios, to test
steps, to runtime information helps to diagnose problems,
identify root causes of a failure or potential security incident,
and apply fixes or updates. F3 facilitates dynamic data collec-
tion, for example, when a certain security event occurs (cf.,
LISTING 1). To make optimal use of this data after a test has

been executed, related events, test steps, and runtime data need
to be grouped with trace links.

F5 – Testing, monitoring, and analysis processes need to
be integrated into the life cycle, sharing information and com-
plementing each other. In this scenario, monitoring data and
observed deviations can inform the creation of new/updated
test cases. The test cases make use of runtime monitors to
enhance field-testing activities and aid in error diagnosis and
quality assurance of the system.

While individual solutions have been explored in the past,
for example, Behavior-driven development (BDD) to automate
(parts) of the testing process [15], current (security) solutions
remain limited in scope, typically focusing on isolated issues
without supporting a cohesive, life cycle-wide framework.
These approaches do not address a comprehensive framework
that guides developers, testers, and quality assurance through-
out the life cycle of a CPS. In the following, we present our
initial idea for such a framework and lay out future research.

III. THE SMART UNIFIED RUNTIME MONITORING
INFRASTRUCTURE FOR GUIDED FIELD-TESTING

Based on the features we deem as crucial for a holistic
testing and monitoring approach, we have derived an initial
version of a conceptual infrastructure for combining field-
testing and monitoring of robotic applications. As part of the
different phases, we leverage existing methods for defining
use cases, creating scenarios and analyzing test results, and
combine them in an integrated life cycle.

A. Proposed Framework

Fig. 1 provides a high-level overview of our envisioned
Smart Unified Runtime Monitoring Infrastructure for Guided
Field-testing (SMURF). Following the DevOps paradigm,
where development and operation are intertwined, we also aim
to leverage capabilities from both development/(field-)testing
and operation/monitoring to complement information collec-
tion and analysis capabilities. The former is used to iteratively
test and validate the System under Monitoring (SuM) during
development while the latter is used in production to monitor
the system. The field test life cycle ( 1 , 2 , and 3 in Fig. 1)
is structured into three core phases:
• Test Definition: During the test definition phase, we use

Use Case Descriptions [16] to define both normal course, and
alternate scenarios for different field tests that can be executed.
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Fig. 1: High-level overview of SMURF.
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This enables the test steps to be captured in a structured
fashion to thoroughly consider each use case while enabling
the framework to later convert these user specifications into
executable tests (cf. F1). To add further detail, these scenarios
can be enriched using additional modeling tools or Domain-
Specific Languages, incorporating information about each use
case, such as stakeholders to be involved, or additional artifacts
to consider. Earlier work in this area has shown that use cases,
combined with a BDD can be used to specify test cases for
different application scenarios [13].

However, while this has proven useful to capture simple
drone testing cases, particularly for more complex ones, ad-
ditional concepts and features, are required to cover the full
spectrum of tests, and, more importantly, collect all necessary
information during test execution. Specifically security-related
test cases, need to be captured and documented in a structured
and easy-to-use manner (cf. F2). Security scenarios focus
on recording security-relevant data and outlining how the
monitoring infrastructure can adapt during security incidents.
This adaptation is facilitated by mapping the monitoring
endpoints to triggers (e.g., detection of abnormal behavior).
By integrating these two pillars – normal-course scenarios
and failure/security scenarios – the infrastructure generates an
executable field test case utilized in the second phase.

• Test Execution & Runtime Monitoring: Once respective
test cases are created, they need to be executed in the field.
This is done as part of the actual field test, where test data
is collected. To capture all relevant information, manual test
data alone is insufficient. For instance, determining if a robot
reached its designated position in the test scenario or if a
drone took off correctly based on the tester’s observations
requires additional validation. Particularly when test cases do
not go as planned, i.e., a failure scenario is activated, and
undesired behavior is observed, additional data needs to be
collected to ensure that an occurring problem can actually be
properly diagnosed, its root cause identified, and ultimately
fixed. Therefore, it is crucial that runtime data is collected
from the monitored systems, along with manual test feedback
(cf. F3). The collected data is stored in a result repository,
which serves as the basis for post-test analysis. Particularly for
ROS-based systems, existing solutions can be leveraged, for
example, rosbag [17] capturing and visualizing test executions.

The monitoring operations life cycle ( R in Fig. 1) is used
as part of the field test life cycle but produces monitors to be
used in production.

Listing 1: Instance of the Given.. When... Then... scenario template.

Given: a robot receives commands on the velocity
from a control node.

When: a command with an abnormal or unexpected
parameter (e.g., extreme velocity) is detected.

Then: increase monitoring frequency of velocity
topic (/cmd_vel) to capture movement tampering.

The Test Definition phase generates runtime monitors. We
can leverage these ready-to-use and iteratively tested runtime
monitors to be used in production to adhere to system require-
ments. For the next development field test life cycle, we can

incorporate the results (data, incidents, errors, etc.) into the
field test life cycle.
• Test and Security Analysis: In the final phase, the test

result data is used to verify whether all previously defined
scenarios were successfully completed. Because each scenario
is linked to its corresponding monitoring endpoint, this ver-
ification can be conducted efficiently (cf. F4). The analysis
allows diagnosis of issues within the system and tracing them
back to their root causes. Consequently, the system can be
updated or fixed based on the test findings. Following an
update, the test cases can be adjusted to reflect the new system
structure, and the testing cycle restarts at phase one (cf. F5).

B. Implementation Concept

To establish our unified field-testing and monitoring in-
frastructure, we present the following conceptual prototypical
implementation.

For the Test-Definition, we combine the well-established
Given–When–Then BDD-notation [15] with the Use Case
notation to define concise scenarios with additional monitor-
ing/testing related information attached. LISTING 1 contains
an instance of a security scenario specification using the
Given... When... Then... template. This specification is further
enriched by modeling other components of the SuM’s envi-
ronment. This can be achieved, for example, using the UML
modeling tool “UMLet”. UMLet facilitates modeling both the
stakeholders and the process steps involved in a scenario,
making the life cycle also accessible to non-technical users.
An example of an UMLet model for the scenario outlined in
LISTING 1 can be found in Fig. 2. In case of a failure/attack
during execution there is a direct link to the stakeholders and
processes involved. For this running use case, a stakeholder
involved is the Shop Floor Worker.

The resulting monitoring configuration consolidates these
two worlds into a single configuration. We then map the
configurations with the respective monitoring endpoints. For
instance, in case of LISTING 1, the monitoring property of
interest is the /cmd_vel ROS topic, which is then mapped
to the scenario to generate the respective Python/C++ ROS
monitors (i.e., the executable).

The monitor is then executed in the respective system
environment, e.g., the target ROS network. During this runtime
part of the field test, data on the monitoring properties of
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......

Robot scans
Environment

Robot Moves to
Target Location

Robot receives
Transp. Task
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Fig. 2: Root cause analysis of one of the security scenarios. This includes
the expected normal course scenario (green nodes), potential deviations and
undesired behavior (red nodes), and resulting adaptations in data collection
(orange nodes).
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interest is collected and persisted. For the security/failure
scenarios, this phase also involves the simulation of attacks,
to check whether the field test configuration triggers a correct
reaction of the monitors. For the security use case velocity
scenario, this means attacking the system by publishing ran-
domly seeded threshold-exceeding velocity commands into the
ROS network.

Upon finishing the field test, the Test and Security Analysis
begins by checking the gathered monitoring data and confirm-
ing that the SuM responded to the field tests as expected. If
this is not the case, it is possible to dig deeper into the gathered
data. Since there is a link in each field test configuration
and monitoring property involved, one can simply filter based
on the configuration specification and trace an error back to
its root cause. For the running use case, we could filter our
raw data based on the knowledge, that the /cmd_vel ROS
topic is involved, and inspect collected data published on this
topic. Once the cause for the unexpected behavior is found,
the system can be updated/fixed and the field test repeated to
check whether the changes made indeed solved the problem.

Once the SuM passes all field tests, the runtime monitors
generated as part of the infrastructure can be deployed in the
production setting.

IV. ROADMAP

We are currently working on creating an end-to-end imple-
mentation of SMURF. In conjunction, we intend to conduct an
exhaustive evaluation: The ROS Gazebo simulation software
and tangible ROS-based hardware (TurtleBot 4) are employed
to implement a case study using ROS 2 [9]. Additionally,
we intend to enhance SMURF’s automation capabilities and
provide a more structured/formal way of specifying test
cases and missions. For example, robotic mission pattern by
Menghi et al. [18] can be a viable aspect to be incorporated in
our scenarios. Our objective is to fully automate the process.
By utilizing the user-friendly field test modeling in Phase 1,
we can generate runtime monitors and map the data in the
analysis phase to the data, as well as automatically involving
the relevant stakeholders in a specific use-case scenario. This
also includes further extending the aspect of behavior-driven
requirements, which has been explored for robotic applica-
tions [19].

Lastly, beyond simply collecting data for field testing, we
aim to enable true self-adaptation within the system. For
example, the system can enforce specific security policies
whenever a monitor detects anomalous data, thereby initiating
adaptive responses in real-time.

V. CONCLUSION

In this paper, we presented our initial efforts towards
combining field testing and monitoring for safe and secure
robotic applications, identified five essential features a po-
tential solution must provide, and demonstrated how our
novel approach can be implemented in a proof-of-concept
framework. We further outline ongoing research on security,
test specification, and automated adaptive monitor generation.

Our next steps include the completion of the implementation
with an automation and self-adaptation process.
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